Alabduljabbar Abdulrahman, Khan Sajid Ullah, Altherwy Youssef N, Almarshad Fahdah, Alsuhaibani Anas
Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.
J Alzheimers Dis. 2025 Sep;107(2):819-834. doi: 10.1177/13872877251362498. Epub 2025 Sep 1.
BackgroundMedical professionals may increase diagnostic accuracy using multimodal medical image fusion techniques to peer inside organs and tissues.ObjectiveThis research work aims to propose a solution for diverse medical diagnostic challenges.MethodsWe propose a dual-purpose model. Initially, we developed a pair of images using the intensity, hue, and saturation (IHS) approach. Next, we applied non-subsampled shearlet transform (NSST) decomposition to these images to obtain the low-frequency and high-frequency coefficients. We then enhanced the structure and background details of the low-frequency coefficients using a novel structure feature modification technique. For the high-frequency coefficients, we utilized the layer-weighted pulse coupled neural network fusion technique to acquire complementary pixel-level information. Finally, we employed reversed NSST and IHS to generate the fused resulting image.ResultsThe proposed approach has been verified on 1350 image sets from two different diseases, Alzheimer's and glioma, across numerous imaging modalities. Our proposed method beats existing cutting-edge models, as proven by both qualitative and quantitative evaluations, and provides valuable information for medical diagnosis. In the majority of cases, our proposed method performed well in terms of entropy, structure similarity index, standard deviation, average distance, and average pixel intensity due to the careful selection of unique fusion strategies in our model. However, in a few cases, NSSTSIPCA performs better than our proposed work in terms of intensity variations (mean absolute error and average distance).ConclusionsThis research work utilized various fusion strategies in the NSST domain to efficiently enhance structural, anatomical, and spectral information.
背景
医学专业人员可以使用多模态医学图像融合技术深入观察器官和组织内部,从而提高诊断准确性。
目的
本研究旨在为各种医学诊断挑战提出一种解决方案。
方法
我们提出了一种两用模型。首先,我们使用强度、色调和饱和度(IHS)方法生成一对图像。接下来,我们对这些图像应用非下采样剪切波变换(NSST)分解,以获得低频和高频系数。然后,我们使用一种新颖的结构特征修改技术增强低频系数的结构和背景细节。对于高频系数,我们利用层加权脉冲耦合神经网络融合技术获取互补的像素级信息。最后,我们采用逆NSST和IHS生成融合后的结果图像。
结果
所提出的方法已在来自阿尔茨海默病和胶质瘤这两种不同疾病的1350个图像集上,通过多种成像模态进行了验证。我们提出的方法在定性和定量评估中均优于现有的前沿模型,并为医学诊断提供了有价值的信息。在大多数情况下,由于我们在模型中精心选择了独特的融合策略,我们提出的方法在熵、结构相似性指数、标准差、平均距离和平均像素强度方面表现良好。然而,在少数情况下,NSSTSIPCA在强度变化(平均绝对误差和平均距离)方面比我们提出的方法表现更好。
结论
本研究工作在NSST域中利用了各种融合策略,以有效地增强结构、解剖和光谱信息。