Tiwari Pragya, Adil Muhammad, Park Kyeung-Il
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Pharmacology and Toxicology Section, University of Veterinary and Animal Sciences, Lahore, Jhang campus, Jhang, 35200, Pakistan.
World J Microbiol Biotechnol. 2025 Jul 28;41(8):272. doi: 10.1007/s11274-025-04485-6.
In the face of climate adversities, the challenges faced by agricultural practices, depleting natural resources, rising hunger, and malnutrition necessitate harnessing bio-based resources, guided by the Sustainable Development Goals (SDGs) and transformative actions. For the development of sustainable food systems and climate-resilient crops, seed biopriming with beneficial microbes is gaining increased recognition, attributed to their favorable impact on plant growth, nutrient acquisition, and defense against pathogens. 'Seed primeomics' is a key concept in seed priming, and emphasizes the retention of stress memories, transgenerational microbial interactions, and plant stress resilience, as demonstrated by Trichoderma harzianum modulation of epigenetics in Lycopersicum esculentum roots. With an expanding scope, next-generation breakthroughs in nano-enabled seed biopriming can potentially address concerns associated with the performance and efficacy of the bio-inoculants in field conditions, as evident by ZnO nanopriming in fragrant rice, resulting in micro-nutrient fortified crops. Furthermore, encapsulation of microbial inoculants with nano-based polymers promotes plant development, while the nanoencapsulation procedure safeguards microbial strains and promotes shelf-life and controlled release, addressing key limitations with commercial applications. While the prospects of seed biopriming are immense and define novel avenues in sustainable agricultural practices, further research is essential to bridge the knowledge gaps. Herein, the article provides insights into how endophyte-mediated seed biopriming, as a potent and cost-effective green technology, is defining new avenues in ecosystem restoration, plant stress tolerance and adaptation, and the creation of climate-resilient crops capable of tolerating fluctuating climates, marking a new era in climate-smart agriculture.
面对气候逆境、农业生产面临的挑战、自然资源的枯竭、饥饿加剧和营养不良问题,在可持续发展目标(SDGs)和变革性行动的指导下,利用生物基资源势在必行。对于可持续粮食系统和气候适应型作物的发展而言,用有益微生物进行种子生物引发越来越受到认可,这归因于其对植物生长、养分获取和抵御病原体的有利影响。“种子引发组学”是种子引发中的一个关键概念,强调应激记忆的保留、跨代微生物相互作用以及植物应激恢复力,如哈茨木霉对番茄根系表观遗传学的调控所示。随着范围的扩大,纳米技术支持的种子生物引发的下一代突破有可能解决与生物接种剂在田间条件下的性能和功效相关的问题,如香稻中的氧化锌纳米引发导致微量营养素强化作物这一实例所示。此外,用纳米基聚合物封装微生物接种剂可促进植物生长,同时纳米封装过程可保护微生物菌株并延长保质期和实现控释,解决了商业应用中的关键限制。虽然种子生物引发的前景广阔,并为可持续农业实践开辟了新途径,但进一步的研究对于弥合知识差距至关重要。在此,本文深入探讨了内生菌介导的种子生物引发作为一种高效且经济高效的绿色技术,如何在生态系统恢复、植物胁迫耐受性和适应性以及培育能够耐受气候变化的气候适应型作物方面开辟新途径,标志着气候智能型农业的新时代。
World J Microbiol Biotechnol. 2025-7-28
Front Plant Sci. 2025-6-11
Planta. 2025-6-19
Philos Trans R Soc Lond B Biol Sci. 2025-5-29
ScientificWorldJournal. 2025-3-17
Antonie Van Leeuwenhoek. 2025-6-8
Crit Rev Biotechnol. 2025-2
Microorganisms. 2024-2-22
Microorganisms. 2023-5-12
Nat Rev Microbiol. 2023-10