Heuser Sophia K, Li Junjie, Li Zhixin, LoBue Anthea, Heard Kyle, Hocks Julia, Suvorava Tatsiana, Cadeddu Ron-Patrick, Strupp Corinna, Dunaway Luke, Zhuge Zhengbing, Gelhaus Stacy L, Heinen André, Germing Ulrich, Feelisch Martin, Carlström Mattias, Isakson Brant, Kelm Malte, Lundberg Jon O, Cortese-Krott Miriam M
Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Germany.
Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, 40204, Düsseldorf, Germany.
Redox Biol. 2025 Jul 14;86:103768. doi: 10.1016/j.redox.2025.103768.
In humans and other primates, red blood cells (RBCs) constitutively express high levels of liver-type arginase 1 (Arg1), which regulates systemic l-arginine and nitric oxide (NO) bioavailability, particularly under pathological conditions such as sickle cell disease. In contrast, the role of RBC Arg1 in mice in vivo remains poorly defined. Here, we investigated the contribution of RBC Arg1 to systemic l-arginine metabolism, NO bioavailability, and cardioprotection following acute myocardial infarction in vivo. Comparative analyses of human blood fractions revealed that arginase activity in RBCs is comparable to that in white blood cells and is predominantly localized to the RBC membrane. In contrast, arginase activity in mouse RBC membranes was 13,500-fold lower as compared to human RBC membranes as measured by C-l-ornithine formation. To assess the in vivo relevance of RBC Arg1, we generated RBC-specific Arg1 knockout (KO) mice using the Cre/loxP technology. RBC Arg1 KO mice exhibited normal erythropoiesis and hematologic parameters. Moreover, systemic l-arginine and l-citrulline levels were preserved, while l-ornithine levels were lower in plasma of RBC Arg1 KO mice as compared to wildtype controls; whereas circulating NO metabolites, systemic hemodynamics, cardiac function, and infarct size post-acute myocardial infarction were preserved. These findings demonstrate that, unlike in humans, in mice RBC Arg1 plays a negligible role in regulating systemic l-arginine homeostasis and cardioprotection, underscoring critical interspecies differences and the need for human studies to evaluate the pathophysiological relevance of RBC arginase.
在人类和其他灵长类动物中,红细胞(RBC)持续高水平表达肝脏型精氨酸酶1(Arg1),该酶调节全身L-精氨酸和一氧化氮(NO)的生物利用度,特别是在诸如镰状细胞病等病理条件下。相比之下,RBC Arg1在小鼠体内的作用仍不清楚。在此,我们研究了RBC Arg1对体内急性心肌梗死后全身L-精氨酸代谢、NO生物利用度和心脏保护的贡献。对人类血液成分的比较分析表明,RBC中的精氨酸酶活性与白细胞中的相当,且主要定位于RBC膜。相比之下,通过C-L-鸟氨酸形成测定,小鼠RBC膜中的精氨酸酶活性比人类RBC膜低13500倍。为了评估RBC Arg1在体内的相关性,我们使用Cre/loxP技术生成了RBC特异性Arg1基因敲除(KO)小鼠。RBC Arg1 KO小鼠表现出正常的红细胞生成和血液学参数。此外,全身L-精氨酸和L-瓜氨酸水平保持不变,而与野生型对照相比,RBC Arg1 KO小鼠血浆中的L-鸟氨酸水平较低;而急性心肌梗死后循环NO代谢物、全身血流动力学、心脏功能和梗死面积保持不变。这些发现表明,与人类不同,在小鼠中RBC Arg1在调节全身L-精氨酸稳态和心脏保护方面作用微不足道,突出了关键的种间差异以及需要进行人体研究以评估RBC精氨酸酶的病理生理相关性。