Pollet Linde, Antolín-Rodríguez Andrea, Gisbert-Aguilar Josep, Búrdalo-Salcedo Gabriel, Juan-Valdés Andrés, García-Álvarez César, Raga-Martín Angel, Schroeyers Wouter, Calvo Víctor, Fernández-Raga María
European Commission, Joint Research Centre (JRC), 2400 Geel, Belgium.
Research Group NuTeC, Centre for Environmental Sciences (CMK), Hasselt University, 3590 Diepenbeek, Belgium.
Materials (Basel). 2025 Jul 16;18(14):3340. doi: 10.3390/ma18143340.
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration and related damage to stones. This study presents a novel methodology for assessing salt movement in solid materials between two types of stones-Boñar and Silos-and two types of binders: blended Portland cement (BPC) and an AAM. The samples underwent capillarity and immersion tests to evaluate water absorption, salt transport, and efflorescence behavior. The capillarity of the Silos stone was 0.148 kg·m·t, whereas this was 0.0166 kg·m·t for the Boñar stone, a ninefold difference. Conductivity mapping and XRD analysis revealed that AAM-based mortars exhibit a significantly higher release of salts, primarily sodium sulfate, which may pose a risk to adjacent porous stones. In contrast, BPC showed lower salt mobility and different salt compositions. These findings highlight the importance of evaluating the compatibility between alternative binders and heritage stones. The use of AAMs may pose significant risks due to their tendency to release soluble salts. Although, in the current experiments, no pore damage or mechanical degradation was observed, additional studies are required to confirm this. A thorough understanding of salt transport mechanisms is therefore essential to ensure that sustainable restoration materials do not inadvertently accelerate the deterioration of structures, a process more problematic when the deterioration affects heritage monuments.
可持续胶凝材料的发展对于减少建筑业的环境足迹至关重要。碱激活材料(AAMs)已成为有前景的环保替代品;然而,它们与 heritage structures 中天然石材的兼容性仍知之甚少,尤其是在盐迁移和对石材的相关损害方面。本研究提出了一种新颖的方法,用于评估两种石材——博尼亚尔石和西洛石——与两种粘结剂:混合波特兰水泥(BPC)和一种 AAM 之间固体材料中的盐迁移。对样品进行了毛细作用和浸泡试验,以评估吸水率、盐传输和泛霜行为。西洛石的毛细作用为 0.148 kg·m·t,而博尼亚尔石为 0.0166 kg·m·t,相差九倍。电导率映射和 XRD 分析表明,基于 AAM 的砂浆表现出显著更高的盐释放量,主要是硫酸钠,这可能对相邻的多孔石材构成风险。相比之下,BPC 显示出较低的盐迁移率和不同的盐成分。这些发现凸显了评估替代粘结剂与 heritage stones 之间兼容性的重要性。由于 AAMs 有释放可溶性盐的倾向,使用它们可能带来重大风险。尽管在当前实验中未观察到孔隙损伤或机械降解,但仍需要进一步研究来证实这一点。因此,全面了解盐传输机制对于确保可持续修复材料不会无意中加速结构恶化至关重要,当恶化影响 heritage monuments 时,这个过程会更成问题。