Ahmad A, Abahussain A A M, Nazir M H, Zaidi S Z J
Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan.
Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia.
Micromachines (Basel). 2025 Jun 23;16(7):735. doi: 10.3390/mi16070735.
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. Potassium ion batteries (PIBs) can be proven a favorable alternative to metal ion batteries because of their widespread potassium reserves, low costs and enhanced protection against sparks. In this study, DFT simulations were employed using the B3LYP/6-311g(d p) method to explore the application of graphene and its doped variants (N,B,P-graphene) as potential anode materials for PIBs. Various key parameters such as adsorption energy, Gibbs free energy, molecular orbital energies, non-covalent interactions, cell voltage, electron density distribution and density of states were computed as a means to evaluate the suitability of materials for PIB applications. Among the four structures, nitrogen- and phosphorus-doped graphene exhibited negative Gibbs free energy values of -0.020056 and -0.021117 hartree, indicating the thermodynamic favorability of charge transfer processes. Doping graphene with nitrogen and phosphorus decreases the HOMO-LUMO gap energy, facilitating efficient ion storage and charge transport. The doping of nitrogen and phosphorus increases the cell voltage from -1.05 V to 0.54 V and 0.57 V, respectively, while boron doping decreases the cell voltage. The cell voltage produced by graphene and its doped variants in potassium ion batteries has the following order: P-graphene (0.57 V) > N-graphene (0.54 V) > graphene (-1.05 V) > B-graphene (-1.54 V). This study illustrates how nitrogen- and phosphorus-doped graphene can be used as a propitious anode electrode for PIBs.
尽管锂离子电池被认为是可再生能源收集、存储和应用的理想候选者,这些电池表现出了良好的性能;然而,与此同时,这些收集装置存在一些重大局限性,包括锂资源稀缺、成本高、毒性以及安全问题。钾离子电池(PIBs)由于其广泛的钾储备、低成本以及增强的抗火花保护,可被证明是金属离子电池的有利替代品。在本研究中,采用密度泛函理论(DFT)模拟,使用B3LYP/6 - 311g(d,p)方法来探索石墨烯及其掺杂变体(N、B、P - 石墨烯)作为PIBs潜在阳极材料的应用。计算了各种关键参数,如吸附能、吉布斯自由能、分子轨道能量、非共价相互作用、电池电压、电子密度分布和态密度,以此来评估材料用于PIBs应用的适用性。在这四种结构中,氮掺杂和磷掺杂的石墨烯表现出吉布斯自由能值分别为 - 0.020056和 - 0.021117哈特里的负值,表明电荷转移过程在热力学上是有利的。用氮和磷掺杂石墨烯会降低最高占据分子轨道 - 最低未占据分子轨道(HOMO - LUMO)能隙,有利于高效的离子存储和电荷传输。氮和磷的掺杂分别将电池电压从 - 1.05 V提高到0.54 V和0.57 V,而硼掺杂则降低电池电压。石墨烯及其掺杂变体在钾离子电池中产生的电池电压具有以下顺序:P - 石墨烯(0.57 V)> N - 石墨烯(0.54 V)> 石墨烯( - 1.05 V)> B - 石墨烯( - 1.54 V)。本研究说明了氮掺杂和磷掺杂的石墨烯如何能够用作PIBs的有利阳极电极。