文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

碳青霉烯类耐药性:机制、治疗与创新

Carbapenem Resistance in : Mechanisms, Therapeutics, and Innovations.

作者信息

de Souza Joyce, D'Espindula Helena Regina Salomé, Ribeiro Isabel de Farias, Gonçalves Geiziane Aparecida, Pillonetto Marcelo, Faoro Helisson

机构信息

Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation FIOCRUZ, Curitiba 81350-010, Brazil.

Molecular Bacteriology Section, Laboratório Central de Saúde Pública do Estado LACEN-PR, Curitiba 83060-500, Brazil.

出版信息

Microorganisms. 2025 Jun 27;13(7):1501. doi: 10.3390/microorganisms13071501.


DOI:10.3390/microorganisms13071501
PMID:40732008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12299412/
Abstract

The global rise of carbapenem-resistant (CRAB) strains poses a critical challenge to healthcare systems due to limited therapeutic options and high mortality rates, especially in intensive care settings. This review explores the epidemiological landscape and molecular mechanisms driving carbapenem resistance, including the production of diverse beta-lactamases (particularly OXA-type enzymes), porin loss, efflux pump overexpression, and mutations in antibiotic targets. Emerging treatment strategies are discussed, such as the use of new beta-lactam-beta-lactamase inhibitor combinations (e.g., sulbactam-durlobactam), siderophore cephalosporins, next-generation polymyxins, as well as novel agents like zosurabalpin and rifabutin (BV100). Alternative approaches-including phage therapy, antimicrobial peptides, CRISPR-based gene editing, and nanoparticle-based delivery systems-are also evaluated for their potential to bypass traditional resistance mechanisms. Furthermore, advances in artificial intelligence and multi-omics integration are highlighted as tools for identifying novel drug targets and predicting resistance profiles. Together, these innovations represent a multifaceted strategy to overcome CRAB infections, yet their successful implementation requires further clinical validation and coordinated surveillance efforts. This analysis highlights the urgent need for continued investment in innovative treatments and effective resistance monitoring to limit the spread of CRAB and protect the effectiveness of last-line antibiotics.

摘要

耐碳青霉烯类(CRAB)菌株在全球范围内的增多,给医疗系统带来了严峻挑战,因为治疗选择有限且死亡率高,尤其是在重症监护环境中。本综述探讨了导致碳青霉烯类耐药的流行病学情况和分子机制,包括多种β-内酰胺酶(特别是OXA型酶)的产生、孔蛋白缺失、外排泵过度表达以及抗生素靶点的突变。文中讨论了新出现的治疗策略,如使用新型β-内酰胺-β-内酰胺酶抑制剂组合(如舒巴坦-度洛巴坦)、铁载体头孢菌素、新一代多粘菌素,以及佐苏巴平、利福布汀(BV100)等新型药物。还评估了包括噬菌体疗法、抗菌肽、基于CRISPR的基因编辑以及基于纳米颗粒的递送系统等替代方法绕过传统耐药机制的潜力。此外,强调了人工智能和多组学整合方面的进展作为识别新型药物靶点和预测耐药谱的工具。这些创新共同构成了克服CRAB感染的多方面策略,但其成功实施需要进一步的临床验证和协调的监测工作。该分析突出了持续投资于创新治疗和有效耐药监测的迫切需求,以限制CRAB的传播并保护一线抗生素的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/1c2e774be605/microorganisms-13-01501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/40ae49dfa230/microorganisms-13-01501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/366f952ad561/microorganisms-13-01501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/1c2e774be605/microorganisms-13-01501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/40ae49dfa230/microorganisms-13-01501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/366f952ad561/microorganisms-13-01501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6e/12299412/1c2e774be605/microorganisms-13-01501-g003.jpg

相似文献

[1]
Carbapenem Resistance in : Mechanisms, Therapeutics, and Innovations.

Microorganisms. 2025-6-27

[2]
Susceptibility toward cefiderocol and sulbactam-durlobactam in extensively drug-resistant detected from ICU admission screening in Hanoi, Vietnam, 2023.

Microbiol Spectr. 2025-7

[3]
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Carbapenemase OXA-23 by Impeding Deacylation.

mBio. 2022-6-28

[4]
Genotypic diversity and antimicrobial resistance phenotype of carbapenem-resistant and carbapenem-susceptible Acinetobacter species isolates.

Pathology. 2025-8

[5]
and comparative analysis of 79 clinical isolates.

Microbiol Spectr. 2025-7

[6]
Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in .

mBio. 2025-1-8

[7]
Regulation of overexpressed efflux pump encoding genes by cinnamon oil and trimethoprim to abolish carbapenem-resistant Acinetobacter baumannii clinical strains.

BMC Microbiol. 2024-2-8

[8]
Exploring β-lactam interactions with DacB1: unraveling optimal therapies for combating drug-resistant .

mBio. 2025-7-10

[9]
Nationwide surveillance of carbapenem-resistant Gram-negative pathogens in the Lebanese environment.

Appl Environ Microbiol. 2025-7-23

[10]
A systematic review and meta-analysis for risk factor profiles in patients with resistant Acinetobacter baumannii infection relative to control patients.

Int J Risk Saf Med. 2023

本文引用的文献

[1]
A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome.

Nature. 2025-4

[2]
Emergence and global spread of a dominant multidrug-resistant clade within Acinetobacter baumannii.

Nat Commun. 2025-3-21

[3]
Phagetherapy updates: New frontiers against antibiotic resistance.

Eur J Microbiol Immunol (Bp). 2025-3-17

[4]
Complex Infections: New Treatment Options in the Antibiotic Pipeline.

Microorganisms. 2025-2-7

[5]
Antibiotic resistance in the Middle East and Southern Asia: a systematic review and meta-analysis.

JAC Antimicrob Resist. 2025-2-19

[6]
β-Lactamase diversity in .

Antimicrob Agents Chemother. 2025-3-5

[7]
Bacteriophage and Phage-Encoded Depolymerase Exhibit Antibacterial Activity Against K9-Type in Mouse Sepsis and Burn Skin Infection Models.

Viruses. 2025-1-6

[8]
Machine learning for antimicrobial peptide identification and design.

Nat Rev Bioeng. 2024-5

[9]
Successful Treatment of a Patient With Chronic Bronchiectasis Using an Induced Native Phage Cocktail: A Case Report.

Cureus. 2025-1-19

[10]
Artificial intelligence in drug development.

Nat Med. 2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索