Sun Xiao-Rui, Li Pu-Sheng, Qiao Huan, Kong Wei-Liang, Wang Ya-Hui, Wu Xiao-Qin
Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
Yunnan Key Laboratory of Coffee (YAU), College of Tropical Crops, Yunnan Agricultural University, Puer 665099, China.
Microorganisms. 2025 Jul 3;13(7):1574. doi: 10.3390/microorganisms13071574.
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely improved Monkina medium No. 1 and No. 2, which are particularly suitable for detecting the solubilization abilities of microbes toward insoluble organic phosphates. , a novel fungal species recently isolated from the rhizosphere soil of , demonstrates remarkable phosphate-solubilizing abilities. Across multiple temperature gradients (15 °C, 20 °C, 25 °C, 30 °C, and 37 °C), it effectively decomposes both insoluble inorganic and organic phosphates. This is achieved through the secretion of organic acids, including gluconic acid (6.10 g L), oxalic acid (0.93 g L), and malonic acid (0.17 g L), as well as phosphate-solubilizing enzymes. Moreover, under low-, medium-, and high-temperature conditions, can decompose insoluble phosphates in three types of soil with varying pH levels, thereby enhancing the overall soil fertility. Genomic analysis of has identified approximately 308 genes associated with phosphate decomposition and environmental adaptability, validating its superior capabilities and multi-faceted strategies for phosphate mobilization. These findings underscore the wide applicability of in maintaining soil phosphorus homeostasis and optimizing the phosphorus use efficiency, highlighting its promising potential for agricultural and environmental applications.
土壤中的解磷微生物(PSMs)在将难溶性磷酸盐转化为植物可利用的可溶性磷方面发挥着关键作用。本文系统地介绍了一系列定性和定量技术,以评估微生物的磷酸盐分解能力。此外,还介绍了两种优化培养基,即改良蒙基纳1号和2号培养基,它们特别适用于检测微生物对难溶性有机磷酸盐的溶解能力。最近从[具体植物名称]根际土壤中分离出的一种新型真菌物种[真菌名称]表现出显著的解磷能力。在多个温度梯度(15℃、20℃、25℃、30℃和37℃)下,它能有效分解难溶性无机和有机磷酸盐。这是通过分泌包括葡萄糖酸(6.10 g/L)、草酸(0.93 g/L)和丙二酸(0.17 g/L)在内的有机酸以及解磷酶来实现的。此外,在低温、中温和高温条件下,[真菌名称]能分解三种不同pH值土壤中的难溶性磷酸盐,从而提高土壤整体肥力。对[真菌名称]的基因组分析已确定约308个与磷酸盐分解和环境适应性相关的基因,证实了其卓越的能力和多方面的磷活化策略。这些发现强调了[真菌名称]在维持土壤磷稳态和优化磷利用效率方面的广泛适用性,突出了其在农业和环境应用中的广阔潜力。