Patel Jully, Bury Gabriel, Ezhov Roman, Pushkar Yulia
Department of Chemistry, Lebanon Valley College, Annville, Pennsylvania 17003, United States.
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States.
Artif Photosynth. 2025 Mar 3;1(4):174-187. doi: 10.1021/aps.4c00024. eCollection 2025 Jul 24.
Optimization of water oxidation reaction (WOR) catalysts is critical for the development of clean energy technology based on the concept of artificial photosynthesis. Deep mechanistic insights at the molecular and electronic levels are required. Theoretically, the radical coupling (RC) mechanism should allow for a virtually barrier-less process of O-O bond formation in the WOR. This mechanism has been proposed for a number of multinuclear Fe-based water oxidation catalysts (WOCs), but its firm experimental confirmation for Fe systems is lacking. Here, we describe a RC mechanism in [(MeOH)-Fe-(Hbbpya)-μ-O-(Hbbpya)-Fe-(MeOH)]-(OTf) () (Hbbpya = -bis-(2,2'-bipyrid-6-yl)-amine) and its methylated analog [(MeOH)-Fe-(CHbbpya)-μ-O-(CHbbpya)-Fe-(MeOH)]-(OTf) ( ). XAS revealed that (dimer species) breaks into monomers under catalytic conditions. The kinetic analysis has shown a second-order reaction in the catalyst, and the kinetic isotope effect has shown a minimal / ≈ 1 effect consistent with the RC pathway; EPR and XAS detected an FeO intermediate. DFT confirmed the preference for the RC pathway. This Fe-based WOC shows a high rate of O evolution in chemical and photochemical WOR, comparable with some well-known Ru-based systems. These results highlight the direction for designing Fe-based WOCs with high activity and the future engineering of WOCs with the RC mechanism for functional and scalable applications for artificial photosynthesis.
水氧化反应(WOR)催化剂的优化对于基于人工光合作用概念的清洁能源技术发展至关重要。需要在分子和电子层面获得深入的机理见解。从理论上讲,自由基偶联(RC)机制应能使WOR中O - O键形成过程几乎无势垒。已针对多种多核铁基水氧化催化剂(WOCs)提出了该机制,但缺乏对铁体系的确切实验证实。在此,我们描述了[(MeOH)-Fe-(Hbbpya)-μ-O-(Hbbpya)-Fe-(MeOH)]-(OTf)()(Hbbpya = -双-(2,2'-联吡啶-6-基)-胺)及其甲基化类似物[(MeOH)-Fe-(CHbbpya)-μ-O-(CHbbpya)-Fe-(MeOH)]-(OTf)()中的RC机制。X射线吸收光谱(XAS)表明(二聚体物种)在催化条件下分解为单体。动力学分析表明催化剂中存在二级反应,动力学同位素效应表明/≈1的最小效应,这与RC途径一致;电子顺磁共振(EPR)和XAS检测到一个FeO中间体。密度泛函理论(DFT)证实了对RC途径的偏好。这种铁基WOC在化学和光化学WOR中显示出高的析氧速率,与一些知名的钌基体系相当。这些结果突出了设计具有高活性的铁基WOC的方向以及未来基于RC机制的WOC工程,以用于人工光合作用的功能性和可扩展应用。