Suppr超能文献

一种用于新兴化学品大鼠急性经口毒性预测的有效机器学习模型:多领域应用及构效关系

An effective machine learning model for rat acute oral toxicity prediction of emerging chemicals: multi-domain applications and structure-activity relationships.

作者信息

Yan J, Shen Z

机构信息

School of Environment and Ecology, Jiangnan University, Jiangsu, China.

出版信息

SAR QSAR Environ Res. 2025 Jun;36(6):537-554. doi: 10.1080/1062936X.2025.2531172. Epub 2025 Jul 31.

Abstract

Given the widespread presence of emerging contaminants in the environment, assessing and ensuring their biosafety is urgent. Under the Globally Harmonized System (GHS), the LD parameter of acute oral toxicity (AOT) is crucial for chemical safety classification. Animal testing limitations have highlighted the need for alternative methods, and machine learning offers a new approach to predict LD through quantitative structure-activity relationship (QSAR) models. This study developed and optimized a machine learning model for LD classification of emerging contaminants based on data from more than 6000 known AOT. Using molecular descriptors and fingerprints, the model achieves an accuracy above 0.86 and a recall score over 0.84, outperforming previous models. The model's robustness was confirmed across various types of emerging contaminants. Shapley additive explanations (SHAP) identified key descriptors like BCUTp_1h, ATSC1pe, and SLogP_VSA4, while the information gain (IG) method highlighted alert substructures [P-O, P-S]. These findings suggest that compounds with high polarizability, mean electronegativity and significant surface area may adversely affect rats. This model enhances understanding of acute toxicity mechanisms and serves as a tool for early screening of safer compounds, promoting the design of greener chemicals.

摘要

鉴于环境中新兴污染物的广泛存在,评估并确保其生物安全性迫在眉睫。在全球协调制度(GHS)下,急性经口毒性(AOT)的半数致死剂量(LD)参数对于化学品安全分类至关重要。动物试验的局限性凸显了替代方法的必要性,而机器学习提供了一种通过定量构效关系(QSAR)模型预测LD的新方法。本研究基于6000多种已知AOT的数据,开发并优化了一种用于新兴污染物LD分类的机器学习模型。该模型使用分子描述符和指纹图谱,准确率超过0.86,召回率超过0.84,优于先前的模型。该模型在各类新兴污染物中的稳健性得到了证实。夏普利值附加解释(SHAP)确定了关键描述符,如BCUTp_1h、ATSC1pe和SLogP_VSA4,而信息增益(IG)方法突出了警示子结构[P-O、P-S]。这些发现表明,具有高极化率、平均电负性和显著表面积的化合物可能对大鼠产生不利影响。该模型增进了对急性毒性机制的理解,可作为早期筛选更安全化合物的工具,推动更绿色化学品的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验