Suppr超能文献

用于医学和生物技术的智能表面的开发:通过自由基可控聚合技术实现玻璃功能化的进展。

Development of Smart Surfaces for Medicine and Biotechnology: Advances in Glass Functionalization through RDRP Techniques.

作者信息

Sroka Michał, Zaborniak Izabela, Chmielarz Paweł

机构信息

Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszów 35-959, Poland.

出版信息

ACS Biomater Sci Eng. 2025 Aug 11;11(8):4694-4713. doi: 10.1021/acsbiomaterials.5c00908. Epub 2025 Jul 31.

Abstract

All glass represents a material with extremely high utility potential in the development of biomaterials and research tools. Due to a number of its unique properties, such as chemical inertness, thermal stability, and transparency, it can be used in the preparation of hybrid materials for medicine and biotechnology. Such materials can be obtained by grafting polymer brushes from glass surface by reversible deactivation radical polymerization (RDRP) techniques. This paper provides a literature review of the foregoing advances in the development of glass surface modification concepts using atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT). These methods are particularly attractive in designing smart coatings because they enable the synthesis of polymers with a well-defined structure and low dispersity. The resulting materials can then serve as antimicrobial surfaces, tools for selective manipulation of cells, and intelligent platforms for creating cell sheets in tissue engineering. Therefore, the idea of glass modification using RDRP techniques appears to be a promising concept for the future in the development of smart materials for various applications.

摘要

在生物材料和研究工具的开发中,玻璃是一种具有极高应用潜力的材料。由于它具有许多独特的特性,如化学惰性、热稳定性和透明度,可用于制备医学和生物技术领域的杂化材料。此类材料可通过可逆失活自由基聚合(RDRP)技术在玻璃表面接枝聚合物刷来获得。本文对使用原子转移自由基聚合(ATRP)和可逆加成-断裂链转移聚合(RAFT)进行玻璃表面改性概念开发的上述进展进行了文献综述。这些方法在设计智能涂层方面特别有吸引力,因为它们能够合成结构明确且分散度低的聚合物。所得材料可作为抗菌表面、细胞选择性操控工具以及组织工程中创建细胞片的智能平台。因此,利用RDRP技术进行玻璃改性的理念在开发各种应用的智能材料方面似乎是未来一个很有前景的概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验