Suppr超能文献

用于高性能导热复合材料的湿度稳定亚微米氧化镁颗粒。

Humidity-stable submicron magnesium oxide particles for high-performance thermally conductive composites.

作者信息

Jeon Ji-Yun, Kwak Ye-Rang, Shin Da-Gyeong, Cha Hyun-Ae, Choi Jong-Jin, Hahn Byung-Dong, Ahn Cheol-Woo, Moon Young Kook

机构信息

Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea.

Department of Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Nanoscale. 2025 Aug 15;17(32):18910-18919. doi: 10.1039/d5nr02016f.

Abstract

While spherical MgO microparticles provide high fluidity and dispersibility within polymer matrices, submicron MgO particles confer superior thermal conductivity to thermally conductive composites by increasing the number of particle contact points and optimizing the heat transport pathways. However, the effectiveness of submicron MgO particles as heat-dissipating agents is limited by conventional fabrication methods, which often fail to prevent moisture reactivity. In this study, we introduce a novel bottom-up approach for the synthesis of submicron MgO particles with superlative humidity resistance and thermal conductivity. Spray drying a polymeric precursor solution synthesized the polymerization of citric acid and ethylene glycol followed by a two-step heat treatment involving oxidation and liquid-phase sintering affords MgO particles with dense morphologies and excellent humidity resistance (1.03% weight variation). These submicron-scale, humidity-stable MgO particles significantly enhance the thermal conductivity of a polydimethylsiloxane matrix, achieving 6.0 W m K at 80 vol% filler content, significantly higher than that of composites without submicron MgO at the same filler content (4.4 W m K). The submicron MgO particles also provide additional electrical insulation; thus, this synthetic method is expected to facilitate the development of high-performance ceramic fillers for advanced heat management applications in next-generation electronic devices.

摘要

虽然球形氧化镁微粒在聚合物基体中具有高流动性和分散性,但亚微米级氧化镁颗粒通过增加颗粒接触点数量并优化热传输路径,赋予导热复合材料卓越的热导率。然而,传统制造方法限制了亚微米级氧化镁颗粒作为散热剂的有效性,这些方法常常无法防止其与水分发生反应。在本研究中,我们引入了一种新颖的自下而上的方法来合成具有卓越耐湿性和热导率的亚微米级氧化镁颗粒。喷雾干燥由柠檬酸和乙二醇聚合而成的聚合物前驱体溶液,随后经过包括氧化和液相烧结的两步热处理,可得到具有致密形态和优异耐湿性(重量变化1.03%)的氧化镁颗粒。这些亚微米级、湿度稳定的氧化镁颗粒显著提高了聚二甲基硅氧烷基体的热导率,在填料含量为80体积%时达到6.0 W m K,明显高于相同填料含量下不含亚微米级氧化镁的复合材料(4.4 W m K)。亚微米级氧化镁颗粒还提供了额外的电绝缘性;因此,预计这种合成方法将有助于开发用于下一代电子设备先进热管理应用的高性能陶瓷填料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验