Duleba Marcin, Zimoląg Eliza, Szuszkiewicz Joanna, Serocki Marcin, Szklarczyk Joanna, Dracz Olga, Kurzejamski Alexander, Więckowska Izabella, Chmiel Marcelina, Lipert Barbara, Sarad Katarzyna, Krawczyk Joanna, Bryzghalov Oleksii, Stachowicz-Wałaszek Agata, Pyziak Karolina, Drozdowska Joanna, Baczyński Krzysztof, Wojtowicz Konrad, Chronowski Maurycy, Rataj Krzysztof, Otrocka Magdalena, Mikula Michał, Feliksiak Paula, Dziadziuszko Rafał, Rzymski Tomasz, Thomason Andrew, Brzózka Krzysztof, Mazan Andrzej
Ryvu Therapeutics, Kraków, Poland.
Ardigen, Kraków, Poland.
Sci Rep. 2025 Jul 31;15(1):26643. doi: 10.1038/s41598-025-08649-0.
Colorectal cancer (CRC) treatment remains challenging due to genetic heterogeneity and resistance mechanisms. To address this, we developed a drug discovery pipeline using patient-derived primary CRC cultures with diverse genomic profiles. These cultures closely resemble certain molecular characteristics of primary and metastatic CRC, highlighting their promise as a translational platform for therapeutic evaluation. Importantly, our engineered model and patient-derived cells reflect the complexity and heterogeneity of primary tumors, not observed with standard immortalized cell lines, offering a more clinically relevant system, although further validation is needed. High-throughput screening (HTS) of 4255 compounds identified 33 with selective efficacy against CRC cells, sparing normal, healthy epithelial cells. Among the tested combinations, everolimus (mTOR inhibitor) and uprosertib (AKT inhibitor) demonstrated promising synergy at clinically relevant concentrations, with favorable therapeutic windows confirmed across tested patient-derived cultures. Notably, this synergy, revealed through advanced models, might have been overlooked in traditional immortalized cell lines, highlighting the translational advantage of patient-derived systems. Furthermore, the integration of machine learning into the HTS pipeline significantly improved scalability, cost-efficiency, and predictive accuracy. Our findings underscore the potential of patient-derived materials combined with machine learning-enhanced drug discovery to advance personalized therapies. Specifically, mTOR-AKT inhibition emerges as a promising strategy for CRC treatment, paving the way for more effective and targeted therapeutic approaches.
由于基因异质性和耐药机制,结直肠癌(CRC)的治疗仍然具有挑战性。为了解决这一问题,我们开发了一种药物发现流程,使用具有不同基因组特征的患者来源的原发性CRC培养物。这些培养物与原发性和转移性CRC的某些分子特征非常相似,突出了它们作为治疗评估转化平台的前景。重要的是,我们构建的模型和患者来源的细胞反映了原发性肿瘤的复杂性和异质性,这是标准永生化细胞系所没有的,提供了一个更具临床相关性的系统,尽管还需要进一步验证。对4255种化合物进行高通量筛选(HTS),确定了33种对CRC细胞具有选择性疗效的化合物,同时对正常健康上皮细胞无影响。在测试的组合中,依维莫司(mTOR抑制剂)和乌帕替尼(AKT抑制剂)在临床相关浓度下表现出有前景的协同作用,在测试的患者来源培养物中均确认了良好的治疗窗口。值得注意的是,通过先进模型揭示的这种协同作用,在传统永生化细胞系中可能被忽视,突出了患者来源系统的转化优势。此外,将机器学习整合到HTS流程中显著提高了可扩展性、成本效益和预测准确性。我们的研究结果强调了患者来源材料与机器学习增强的药物发现相结合推进个性化治疗的潜力。具体而言,mTOR-AKT抑制作为一种有前景的CRC治疗策略出现,为更有效和靶向的治疗方法铺平了道路。