Suppr超能文献

老年人血管性抑郁诊断的可解释机器学习模型的识别与验证:一项多中心队列研究

Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort study.

作者信息

Zhang Ran, Li Tian, Fan Fan, He Haoying, Lan Liuyi, Sun Dong, Xu Zhipeng, Peng Sisi, Cao Jing, Xu Juan, Peng Xiaoxiang, Lei Ming, Song Hao, Zhang Junjian

机构信息

Department of Neurology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan , Hubei Province, 430071, China.

Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.

出版信息

BMC Med. 2025 Jul 31;23(1):448. doi: 10.1186/s12916-025-04283-9.

Abstract

BACKGROUND

Vascular depression (VaDep) is a prevalent affective disorder in older adults that significantly impacts functional status and quality of life. Early identification and intervention are crucial but largely insufficient in clinical practice due to inconspicuous depressive symptoms mostly, heterogeneous imaging manifestations, and the lack of definitive peripheral biomarkers. This study aimed to develop and validate an interpretable machine learning (ML) model for VaDep to serve as a clinical support tool.

METHODS

This study included 602 participants from Wuhan in China divided into 236 VaDep patients and 366 controls for training and internal validation from July 2020 to October 2023. An independent dataset of 171 participants from surrounding areas was used for external validation. We collected clinical data, neuropsychological assessments, blood test results, and MRI scans to develop and refine ML models through cross-validation. Feature reduction was implemented to simplify the models without compromising their performance, with validation achieved through internal and external datasets. The SHapley Additive exPlanations method was used to enhance model interpretability.

RESULTS

The Light Gradient Boosting Machine (LGBM) model outperformed from the selected 6 ML algorithms based on performance metrics. An optimized, interpretable LGBM model with 8 key features, including white matter hyperintensities score, age, vascular endothelial growth factor, interleukin-6, brain-derived neurotrophic factor, tumor necrosis factor-alpha levels, lacune counts, and serotonin level, demonstrated high diagnostic accuracy in both internal (AUROC = 0.937) and external (AUROC = 0.896) validations. The final model also achieved, and marginally exceeded, clinician-level diagnostic performance.

CONCLUSIONS

Our research established a consistent and explainable ML framework for identifying VaDep in older adults, utilizing comprehensive clinical data. The 8 characteristics identified in the final LGBM model provide new insights for further exploration of VaDep mechanisms and emphasize the need for enhanced focus on early identification and intervention in this vulnerable group. More attention needs to be paid to the affective health of older adults.

摘要

背景

血管性抑郁症(VaDep)是老年人中一种常见的情感障碍,对功能状态和生活质量有重大影响。早期识别和干预至关重要,但在临床实践中大多由于抑郁症状不明显、影像学表现异质性以及缺乏明确的外周生物标志物而严重不足。本研究旨在开发并验证一种用于VaDep的可解释机器学习(ML)模型,作为临床支持工具。

方法

本研究纳入了来自中国武汉的602名参与者,在2020年7月至2023年10月期间分为236名VaDep患者和366名对照进行训练和内部验证。来自周边地区的171名参与者的独立数据集用于外部验证。我们收集了临床数据、神经心理学评估、血液检测结果和MRI扫描,通过交叉验证来开发和完善ML模型。实施特征约简以简化模型而不影响其性能,并通过内部和外部数据集进行验证。使用SHapley加法解释方法来增强模型的可解释性。

结果

基于性能指标,在所选的6种ML算法中,轻梯度提升机(LGBM)模型表现最佳。一个优化的、可解释的LGBM模型,具有8个关键特征,包括白质高信号评分、年龄、血管内皮生长因子、白细胞介素-6、脑源性神经营养因子、肿瘤坏死因子-α水平、腔隙计数和血清素水平,在内部(AUROC = 0.937)和外部(AUROC = 0.896)验证中均显示出高诊断准确性。最终模型还达到并略超过了临床医生水平的诊断性能。

结论

我们的研究利用全面的临床数据,建立了一个用于识别老年人VaDep的一致且可解释的ML框架。最终LGBM模型中确定的8个特征为进一步探索VaDep机制提供了新见解,并强调了加强对这一弱势群体早期识别和干预的必要性。需要更多关注老年人的情感健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验