GRN+:一种用于慢性下背痛的三维超声图像组织层分析的简化生成强化网络。
GRN+: a simplified generative reinforcement network for tissue layer analysis in 3D ultrasound images for chronic low-back pain.
作者信息
Zeng Zixue, Zhao Xiaoyan, Cartier Matthew, Meng Xin, Pu Jiantao
机构信息
University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States.
University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States.
出版信息
J Med Imaging (Bellingham). 2025 Jul;12(4):044001. doi: 10.1117/1.JMI.12.4.044001. Epub 2025 Jul 31.
PURPOSE
3D ultrasound delivers high-resolution, real-time images of soft tissues, which are essential for pain research. However, manually distinguishing various tissues for quantitative analysis is labor-intensive. We aimed to automate multilayer segmentation in 3D ultrasound volumes using minimal annotated data by developing generative reinforcement network plus (GRN+), a semi-supervised multi-model framework.
APPROACH
GRN+ integrates a ResNet-based generator and a U-Net segmentation model. Through a method called segmentation-guided enhancement (SGE), the generator produces new images under the guidance of the segmentation model, with its weights adjusted according to the segmentation loss gradient. To prevent gradient explosion and secure stable training, a two-stage backpropagation strategy was implemented: the first stage propagates the segmentation loss through both the generator and segmentation model, whereas the second stage concentrates on optimizing the segmentation model alone, thereby refining mask prediction using the generated images.
RESULTS
Tested on 69 fully annotated 3D ultrasound scans from 29 subjects with six manually labeled tissue layers, GRN+ outperformed all other semi-supervised methods in terms of the Dice coefficient using only 5% labeled data, despite not using unlabeled data for unsupervised training. In addition, when applied to fully annotated datasets, GRN+ with SGE achieved a 2.16% higher Dice coefficient while incurring lower computational costs compared to other models.
CONCLUSIONS
GRN+ provides accurate tissue segmentation while reducing both computational expenses and the dependency on extensive annotations, making it an effective tool for 3D ultrasound analysis in patients with chronic lower back pain.
目的
三维超声可提供软组织的高分辨率实时图像,这对疼痛研究至关重要。然而,手动区分各种组织以进行定量分析是一项劳动密集型工作。我们旨在通过开发生成强化网络升级版(GRN+),即一种半监督多模型框架,使用最少的标注数据实现三维超声容积的多层分割自动化。
方法
GRN+集成了基于残差网络(ResNet)的生成器和U-Net分割模型。通过一种称为分割引导增强(SGE)的方法,生成器在分割模型的引导下生成新图像,其权重根据分割损失梯度进行调整。为防止梯度爆炸并确保稳定训练,实施了两阶段反向传播策略:第一阶段通过生成器和分割模型传播分割损失,而第二阶段仅专注于优化分割模型,从而使用生成的图像细化掩码预测。
结果
在来自29名受试者的69次完全标注的三维超声扫描上进行测试,这些扫描有六个手动标记的组织层,GRN+仅使用5%的标注数据,在Dice系数方面优于所有其他半监督方法,尽管未使用未标注数据进行无监督训练。此外,当应用于完全标注的数据集时,与其他模型相比,采用SGE的GRN+在Dice系数上提高了2.16%,同时计算成本更低。
结论
GRN+在减少计算费用和对大量标注的依赖的同时,提供了准确的组织分割,使其成为慢性下腰痛患者三维超声分析的有效工具。