de Ceuninck van Capelle Charlotte, Luo Leo, Leitner Alexander, Tschanz Stefan A, Latzin Philipp, Ott Sebastian, Herren Tobias, Müller Loretta, Ishikawa Takashi
PSI Center of Life Sciences, Laboratory of Multiscale Bioimaging, Villigen, Switzerland.
Department of Biology, ETH Zurich, Zurich, Switzerland.
Front Mol Biosci. 2025 Jul 17;12:1593810. doi: 10.3389/fmolb.2025.1593810. eCollection 2025.
INTRODUCTION: Primary ciliary dyskinesia (PCD) is a genetic disorder affecting motile cilia across various organs, leading to recurrent respiratory infections, subfertility, and laterality defects. While several diagnostic tools exist-such as high-speed video microscopy, immunofluorescence staining, electron microscopy, and genetic screening-the relationship between different pathogenic variants within a single PCD gene and their effects on ciliary composition, structure, and clinical phenotype remains poorly understood. METHODS: To investigate this, we analyzed cilia from PCD patients with different mutations in axonemal dynein heavy chain using mass spectrometry and cryo-electron tomography. These methods allowed us to examine both the protein composition and ultrastructural organization of motile cilia in affected individuals. RESULTS: Though all analyzed patients present similarly in traditional diagnostic methods, we observed differences in axonemal composition among patients carrying different mutations. Specific reductions in ciliary components varied between individuals, indicating a mutation-specific impact. Notably, proteins such as VWA3B, KIAA1430/CFAP97, and DTHD1-not previously identified as components of human respiratory motile cilia-were detected in wild type cilia, but not in patient cilia. Lastly, we confirmed some changes in protein abundance in the 96-nm repeated unit of the axoneme between wild-type and PCD samples. DISCUSSION: These findings suggest that mutations in result in varied and specific alterations in axonemal composition, reflecting the heterogeneity of the disease at the molecular level. The discovery of novel ciliary proteins and mutation-specific differences enhances our understanding of the complexity of PCD pathogenesis and may inform future diagnostic and therapeutic strategies.
引言:原发性纤毛运动障碍(PCD)是一种遗传性疾病,会影响多个器官中的运动性纤毛,导致反复呼吸道感染、生育力低下和身体不对称缺陷。虽然存在多种诊断工具,如高速视频显微镜检查、免疫荧光染色、电子显微镜检查和基因筛查,但对于单个PCD基因内不同致病变体之间的关系及其对纤毛组成、结构和临床表型的影响仍知之甚少。 方法:为了对此进行研究,我们使用质谱分析和冷冻电子断层扫描技术,分析了轴丝动力蛋白重链存在不同突变的PCD患者的纤毛。这些方法使我们能够检查受影响个体中运动性纤毛的蛋白质组成和超微结构组织。 结果:尽管所有分析的患者在传统诊断方法中的表现相似,但我们观察到携带不同突变的患者之间轴丝组成存在差异。纤毛成分的具体减少在个体之间有所不同,表明存在突变特异性影响。值得注意的是,诸如VWA3B、KIAA1430/CFAP97和DTHD1等蛋白质(以前未被确定为人类呼吸道运动性纤毛的成分)在野生型纤毛中被检测到,但在患者纤毛中未被检测到。最后,我们证实了野生型和PCD样本之间轴丝96纳米重复单元中蛋白质丰度的一些变化。 讨论:这些发现表明,突变会导致轴丝组成发生多样且特定的改变,反映了该疾病在分子水平上的异质性。新型纤毛蛋白的发现以及突变特异性差异增强了我们对PCD发病机制复杂性的理解,并可能为未来的诊断和治疗策略提供依据。
Am J Respir Cell Mol Biol. 2015-10
Orphanet J Rare Dis. 2022-7-19
Cytoskeleton (Hoboken). 2025-7-28
Cochrane Database Syst Rev. 2020-1-9
bioRxiv. 2023-1-14
Protein Sci. 2023-11
Comput Methods Programs Biomed. 2023-11
Nat Struct Mol Biol. 2023-5