Wang Yinhe, Wang Chao, Mou Li-Hui, Jiang Jun
State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
JACS Au. 2025 Jul 15;5(7):3669-3678. doi: 10.1021/jacsau.5c00764. eCollection 2025 Jul 28.
Machine learning (ML) analysis of gas-phase metal cluster reactivity has emerged as a pivotal approach in this field. However, existing ML studies relying on electronic properties have primarily focused on discrete features, with less consideration of continuous structural factors that also govern cluster reactivity. Here, we present the first graph neural network (GNN) framework to model N activation reactivity across 245 metal clusters, combining DFT-optimized structures with experimental reaction rates collected from the literature and a public data set. Through encoding both topological connectivity and atomic-level features (e.g., natural charge, valence electron occupancy, and atomic number), the graph isomorphism network (GIN) achieves superior predictive performance on reaction rates of unseen clusters. Explainable analysis reveals that natural charge redistribution likely serves as the primary mechanism for ligand-mediated reactivity modulation. Furthermore, subgraph charge polarization shows potential as a reactivity descriptormetal-core subgraphs in highly active clusters exhibit significantly lower charge polarization than mixed metal-ligand subgraphs in less active clusters. This work establishes a graph-based interpretable framework for understanding structure-activity relationships of small-molecule activation by metal clusters.
气相金属团簇反应性的机器学习(ML)分析已成为该领域的一种关键方法。然而,现有的基于电子性质的ML研究主要集中在离散特征上,较少考虑同样控制团簇反应性的连续结构因素。在此,我们提出了第一个图神经网络(GNN)框架,用于对245个金属团簇的N活化反应性进行建模,将密度泛函理论(DFT)优化的结构与从文献和一个公共数据集中收集的实验反应速率相结合。通过对拓扑连通性和原子级特征(如自然电荷、价电子占有率和原子序数)进行编码,图同构网络(GIN)在预测未见团簇的反应速率方面具有卓越的性能。可解释分析表明,自然电荷重新分布可能是配体介导的反应性调节的主要机制。此外,子图电荷极化显示出作为反应性描述符的潜力——高活性团簇中的金属核心子图比低活性团簇中的混合金属-配体子图表现出明显更低的电荷极化。这项工作建立了一个基于图的可解释框架,用于理解金属团簇对小分子活化的构效关系。
2025-1
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2018-2-6
Phys Chem Chem Phys. 2025-7-10
J Phys Chem A. 2025-2-27
J Am Chem Soc. 2025-1-8
J Am Chem Soc. 2023-8-23