文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用图神经网络解析金属团簇对N活化的实验反应活性

Deciphering Experimental Reactivity of Metal Clusters Toward N Activation Using Graph Neural Networks.

作者信息

Wang Yinhe, Wang Chao, Mou Li-Hui, Jiang Jun

机构信息

State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.

Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

JACS Au. 2025 Jul 15;5(7):3669-3678. doi: 10.1021/jacsau.5c00764. eCollection 2025 Jul 28.


DOI:10.1021/jacsau.5c00764
PMID:40747023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12308399/
Abstract

Machine learning (ML) analysis of gas-phase metal cluster reactivity has emerged as a pivotal approach in this field. However, existing ML studies relying on electronic properties have primarily focused on discrete features, with less consideration of continuous structural factors that also govern cluster reactivity. Here, we present the first graph neural network (GNN) framework to model N activation reactivity across 245 metal clusters, combining DFT-optimized structures with experimental reaction rates collected from the literature and a public data set. Through encoding both topological connectivity and atomic-level features (e.g., natural charge, valence electron occupancy, and atomic number), the graph isomorphism network (GIN) achieves superior predictive performance on reaction rates of unseen clusters. Explainable analysis reveals that natural charge redistribution likely serves as the primary mechanism for ligand-mediated reactivity modulation. Furthermore, subgraph charge polarization shows potential as a reactivity descriptormetal-core subgraphs in highly active clusters exhibit significantly lower charge polarization than mixed metal-ligand subgraphs in less active clusters. This work establishes a graph-based interpretable framework for understanding structure-activity relationships of small-molecule activation by metal clusters.

摘要

气相金属团簇反应性的机器学习(ML)分析已成为该领域的一种关键方法。然而,现有的基于电子性质的ML研究主要集中在离散特征上,较少考虑同样控制团簇反应性的连续结构因素。在此,我们提出了第一个图神经网络(GNN)框架,用于对245个金属团簇的N活化反应性进行建模,将密度泛函理论(DFT)优化的结构与从文献和一个公共数据集中收集的实验反应速率相结合。通过对拓扑连通性和原子级特征(如自然电荷、价电子占有率和原子序数)进行编码,图同构网络(GIN)在预测未见团簇的反应速率方面具有卓越的性能。可解释分析表明,自然电荷重新分布可能是配体介导的反应性调节的主要机制。此外,子图电荷极化显示出作为反应性描述符的潜力——高活性团簇中的金属核心子图比低活性团簇中的混合金属-配体子图表现出明显更低的电荷极化。这项工作建立了一个基于图的可解释框架,用于理解金属团簇对小分子活化的构效关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/5a60b4e3a8e3/au5c00764_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/226b06ed1237/au5c00764_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/894d993d0ff6/au5c00764_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/847957cb6390/au5c00764_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/3d32b7747144/au5c00764_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/5a60b4e3a8e3/au5c00764_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/226b06ed1237/au5c00764_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/894d993d0ff6/au5c00764_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/847957cb6390/au5c00764_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/3d32b7747144/au5c00764_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3051/12308399/5a60b4e3a8e3/au5c00764_0005.jpg

相似文献

[1]
Deciphering Experimental Reactivity of Metal Clusters Toward N Activation Using Graph Neural Networks.

JACS Au. 2025-7-15

[2]
Accelerated prediction of molecular properties for per- and polyfluoroalkyl substances using graph neural networks with adjacency-free message passing.

Environ Pollut. 2025-6-30

[3]
Short-Term Memory Impairment

2025-1

[4]
How large is the universe of RNA-like motifs? A clustering analysis of RNA graph motifs using topological descriptors.

PLoS Comput Biol. 2025-7-15

[5]
Structural Descriptor Bridging the Microstructural Feature and Catalytic Reactivity for Rational Design of Metal Catalysts.

Acc Chem Res. 2025-8-19

[6]
How Large is the Universe of RNA-Like Motifs? A Clustering Analysis of RNA Graph Motifs Using Topological Descriptors.

ArXiv. 2025-1-8

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[8]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[9]
Performance assessment of various graph neural network architectures for predicting yields in cross-coupling reactions.

Phys Chem Chem Phys. 2025-7-10

[10]
Building Explainable Graph Neural Network by Sparse Learning for the Drug-Protein Binding Prediction.

J Comput Biol. 2025-7

本文引用的文献

[1]
Machine Learning Study of Methane Activation by Gas-Phase Species.

J Phys Chem A. 2025-2-27

[2]
Consecutive C-C Coupling of CH and CO Mediated by Heteronuclear Metal Cations CuTa.

J Am Chem Soc. 2025-1-8

[3]
Machine Learning for Experimental Reactivity of a Set of Metal Clusters toward C-H Activation.

J Am Chem Soc. 2024-5-8

[4]
The Synergistic Effect between Metal and Sulfur Vacancy to Boost CO Reduction Efficiency: A Study on Descriptor Transferability and Activity Prediction.

JACS Au. 2024-1-10

[5]
Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts.

Science. 2024-1-5

[6]
Selective Reduction of NO into N Catalyzed by Rh-Doped Cluster Anions RhCeO.

J Am Chem Soc. 2023-8-23

[7]
Dinitrogen Activation by Heteronuclear Bimetallic Cluster Anion FeV in the Gas Phase.

JACS Au. 2023-5-15

[8]
Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts.

J Am Chem Soc. 2023-5-24

[9]
Prediction of Three-Metal Cluster Catalysts on Two-Dimensional WN Support with Integrated Descriptors for Electrocatalytic Nitrogen Reduction.

ACS Nano. 2023-1-6

[10]
Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor.

Nat Catal. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索