文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PepLand:一种用于全面呈现标准和非标准氨基酸情况的大规模预训练肽段表示模型。

PepLand: a large-scale pre-trained peptide representation model for a comprehensive landscape of both canonical and non-canonical amino acids.

作者信息

Zhang Ruochi, Wu Haoran, Liu Chang, Yang Qian, Xiu Yuting, Li Kewei, Chen Ningning, Wang Yu, Wang Yan, Gao Xin, Zhou Fengfeng

机构信息

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.

School of Artificial Intelligence, Jilin University, Changchun 130012, China.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf367.


DOI:10.1093/bib/bbaf367
PMID:40748324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12315545/
Abstract

The recent interest in peptides incorporating non-canonical amino acids has surged within the scientific community, driven by their enhanced stability and resistance to proteolytic degradation. These so-called non-canonical peptides offer significant potential for modifying biological, pharmacological, and physiochemical characteristics in both native and synthetic contexts. Despite their advantages, there remains a notable gap in the availability of an efficient pre-trained model capable of effectively capturing feature representations from such intricate peptide sequences. This study herein introduces PepLand, a novel pre-training framework designed for the comprehensive representation and analysis of peptides, encompassing both canonical and non-canonical amino acids. PepLand leverages a general-purpose multi-view heterogeneous graph neural network to unveil the subtle structural representations of peptides. Our empirical evaluations demonstrate PepLand's proficiency in a range of peptide property prediction tasks, including cell penetrability, solubility, and protein-peptide binding affinity. These rigorous assessments affirm PepLand's superior capability in discerning critical representations of peptides with both canonical and non-canonical amino acids, and provide a robust foundation for transformative advances in peptide-focused pharmaceutical research. We have made the entire source code and datasets available at http://www.healthinformaticslab.org/supp/resources.php or https://github.com/zhangruochi/PepLand.

摘要

近期,科学界对包含非标准氨基酸的肽的兴趣激增,这是由其增强的稳定性和抗蛋白水解降解能力所驱动的。这些所谓的非标准肽在天然和合成环境中修饰生物学、药理学和物理化学特性方面具有巨大潜力。尽管它们具有诸多优势,但在能够有效从如此复杂的肽序列中捕捉特征表示的高效预训练模型的可用性方面,仍存在显著差距。本研究在此引入了PepLand,这是一种新颖的预训练框架,专为肽的全面表示和分析而设计,涵盖标准和非标准氨基酸。PepLand利用通用的多视图异构图神经网络来揭示肽的微妙结构表示。我们的实证评估证明了PepLand在一系列肽特性预测任务中的熟练度,包括细胞穿透性、溶解度和蛋白质 - 肽结合亲和力。这些严格的评估证实了PepLand在辨别具有标准和非标准氨基酸的肽的关键表示方面的卓越能力,并为以肽为重点的药物研究的变革性进展提供了坚实基础。我们已将完整的源代码和数据集发布在http://www.healthinformaticslab.org/supp/resources.php或https://github.com/zhangruochi/PepLand上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/a903f0b906e1/bbaf367f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/07628ba745c7/bbaf367f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/b006f08eef4c/bbaf367f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/72e7c09b3c48/bbaf367f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/847536a9b166/bbaf367f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/522c2e08ce7d/bbaf367f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/bfd2c4735b9d/bbaf367f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/a903f0b906e1/bbaf367f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/07628ba745c7/bbaf367f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/b006f08eef4c/bbaf367f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/72e7c09b3c48/bbaf367f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/847536a9b166/bbaf367f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/522c2e08ce7d/bbaf367f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/bfd2c4735b9d/bbaf367f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957f/12315545/a903f0b906e1/bbaf367f7.jpg

相似文献

[1]
PepLand: a large-scale pre-trained peptide representation model for a comprehensive landscape of both canonical and non-canonical amino acids.

Brief Bioinform. 2025-7-2

[2]
AmpHGT: expanding prediction of antimicrobial activity in peptides containing non-canonical amino acids using multi-view constrained heterogeneous graph transformer.

BMC Biol. 2025-7-1

[3]
TransPTM: a transformer-based model for non-histone acetylation site prediction.

Brief Bioinform. 2024-3-27

[4]
Short-Term Memory Impairment

2025-1

[5]
iACP-DPNet: a dual-pooling causal dilated convolutional network for interpretable anticancer peptide identification.

Funct Integr Genomics. 2025-7-4

[6]
ProtGO: universal protein function prediction utilizing multi-modal gene ontology knowledge.

Bioinformatics. 2025-7-1

[7]
MultiRepPI: a cross-modal feature fusion-based multiple characterization framework for plant peptide-protein interaction prediction.

BMC Plant Biol. 2025-7-19

[8]
Decoding the impact of neighboring amino acids on ESI-MS intensity output through deep learning.

J Proteomics. 2024-10-30

[9]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[10]
Accurate PROTAC-targeted degradation prediction with DegradeMaster.

Bioinformatics. 2025-7-1

引用本文的文献

[1]
Gumbel-Softmax Flow Matching with Straight-Through Guidance for Controllable Biological Sequence Generation.

ArXiv. 2025-3-21

[2]
PepTune: Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion.

ArXiv. 2025-1-1

本文引用的文献

[1]
Molecular fragmentation as a crucial step in the AI-based drug development pathway.

Commun Chem. 2024-2-1

[2]
ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information.

Int J Mol Sci. 2023-10-22

[3]
Cyclic Peptides for Drug Development.

Angew Chem Int Ed Engl. 2024-1-15

[4]
UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.

Brief Bioinform. 2023-5-19

[5]
CycPeptMPDB: A Comprehensive Database of Membrane Permeability of Cyclic Peptides.

J Chem Inf Model. 2023-4-10

[6]
Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science. 2023-3-17

[7]
ProteinBERT: a universal deep-learning model of protein sequence and function.

Bioinformatics. 2022-4-12

[8]
A deep-learning framework for multi-level peptide-protein interaction prediction.

Nat Commun. 2021-9-15

[9]
DeepFrag: a deep convolutional neural network for fragment-based lead optimization.

Chem Sci. 2021-5-8

[10]
Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences.

Proc Natl Acad Sci U S A. 2021-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索