Zhang Ruochi, Wu Haoran, Liu Chang, Yang Qian, Xiu Yuting, Li Kewei, Chen Ningning, Wang Yu, Wang Yan, Gao Xin, Zhou Fengfeng
Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.
School of Artificial Intelligence, Jilin University, Changchun 130012, China.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf367.
The recent interest in peptides incorporating non-canonical amino acids has surged within the scientific community, driven by their enhanced stability and resistance to proteolytic degradation. These so-called non-canonical peptides offer significant potential for modifying biological, pharmacological, and physiochemical characteristics in both native and synthetic contexts. Despite their advantages, there remains a notable gap in the availability of an efficient pre-trained model capable of effectively capturing feature representations from such intricate peptide sequences. This study herein introduces PepLand, a novel pre-training framework designed for the comprehensive representation and analysis of peptides, encompassing both canonical and non-canonical amino acids. PepLand leverages a general-purpose multi-view heterogeneous graph neural network to unveil the subtle structural representations of peptides. Our empirical evaluations demonstrate PepLand's proficiency in a range of peptide property prediction tasks, including cell penetrability, solubility, and protein-peptide binding affinity. These rigorous assessments affirm PepLand's superior capability in discerning critical representations of peptides with both canonical and non-canonical amino acids, and provide a robust foundation for transformative advances in peptide-focused pharmaceutical research. We have made the entire source code and datasets available at http://www.healthinformaticslab.org/supp/resources.php or https://github.com/zhangruochi/PepLand.
近期,科学界对包含非标准氨基酸的肽的兴趣激增,这是由其增强的稳定性和抗蛋白水解降解能力所驱动的。这些所谓的非标准肽在天然和合成环境中修饰生物学、药理学和物理化学特性方面具有巨大潜力。尽管它们具有诸多优势,但在能够有效从如此复杂的肽序列中捕捉特征表示的高效预训练模型的可用性方面,仍存在显著差距。本研究在此引入了PepLand,这是一种新颖的预训练框架,专为肽的全面表示和分析而设计,涵盖标准和非标准氨基酸。PepLand利用通用的多视图异构图神经网络来揭示肽的微妙结构表示。我们的实证评估证明了PepLand在一系列肽特性预测任务中的熟练度,包括细胞穿透性、溶解度和蛋白质 - 肽结合亲和力。这些严格的评估证实了PepLand在辨别具有标准和非标准氨基酸的肽的关键表示方面的卓越能力,并为以肽为重点的药物研究的变革性进展提供了坚实基础。我们已将完整的源代码和数据集发布在http://www.healthinformaticslab.org/supp/resources.php或https://github.com/zhangruochi/PepLand上。
Brief Bioinform. 2024-3-27
2025-1
Funct Integr Genomics. 2025-7-4
Bioinformatics. 2025-7-1
J Proteomics. 2024-10-30
Bioinformatics. 2025-7-1
Commun Chem. 2024-2-1
Angew Chem Int Ed Engl. 2024-1-15
Brief Bioinform. 2023-5-19
J Chem Inf Model. 2023-4-10
Bioinformatics. 2022-4-12
Nat Commun. 2021-9-15
Proc Natl Acad Sci U S A. 2021-4-13