文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物正交化学转化的超分子材料与策略

Supramolecular Materials and Strategies for Bioorthogonal Chemical Transformations.

作者信息

Laporte Annechien A H, Reek Joost N H

机构信息

Homogeneous, Supramolecular, and Bio-Inspired Catalysis, van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands.

出版信息

Chem Rev. 2025 Aug 13;125(15):7223-7274. doi: 10.1021/acs.chemrev.5c00047. Epub 2025 Aug 1.


DOI:10.1021/acs.chemrev.5c00047
PMID:40748820
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12355711/
Abstract

Bioorthogonal reactions play a key role in controlled chemical transformations in living systems and are therefore applied to a diverse area of biological and medical applications. However, these applications can be limited by poor selectivity, slow kinetics under biological conditions, and intrinsic incompatibility between the introduced materials and the cellular environment. An emerging strategy for greater functional control over bioorthogonal transformations is the employment of supramolecular strategies or constructs. Herein, we focus on synthetic supramolecular systems that (i) improve biocompatibility by shielding reactive species within protective supramolecular constructs from harsh biological environments; (ii) allow for integration of subcellular targeting moieties; (iii) reduce toxicity; (iv) accelerate reaction rates through molecular preorganization; (v) explore entirely new tools, such as catalysis regulated by controlled stimuli at a functionalized surface. Through rational integration of these supramolecular strategies, bioorthogonal reactions could achieve enhanced precision, faster kinetics, and targeted reactivity within specific tissues, cells, or organelles, subsequently paving the way for further applications in chemical biology and therapeutic interventions.

摘要

生物正交反应在生命系统中的可控化学转化中起着关键作用,因此被应用于生物和医学应用的多个领域。然而,这些应用可能受到选择性差、生物条件下动力学缓慢以及引入的材料与细胞环境之间内在不相容性的限制。一种对生物正交转化进行更大功能控制的新兴策略是采用超分子策略或构建体。在此,我们专注于合成超分子系统,这些系统能够:(i)通过在保护性超分子构建体内将反应性物种与恶劣的生物环境隔离开来提高生物相容性;(ii)允许整合亚细胞靶向部分;(iii)降低毒性;(iv)通过分子预组织加速反应速率;(v)探索全新的工具,例如在功能化表面由可控刺激调节的催化作用。通过合理整合这些超分子策略,生物正交反应能够在特定组织、细胞或细胞器内实现更高的精度、更快的动力学和靶向反应性,从而为化学生物学和治疗干预的进一步应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0ab5395194b8/cr5c00047_0041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/29057f07eb93/cr5c00047_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/cdfef029c4d5/cr5c00047_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/d44d552239c5/cr5c00047_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b2386998f49d/cr5c00047_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0a5f9c17ba3d/cr5c00047_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7b935bbb60c8/cr5c00047_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/368d999275fd/cr5c00047_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/affdac94b69e/cr5c00047_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0de7e0fbd624/cr5c00047_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/9e804f303d3f/cr5c00047_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/60357a2d49ff/cr5c00047_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b80c8754d748/cr5c00047_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/95efc8dfc595/cr5c00047_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/9c2e0c83473c/cr5c00047_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/e15a169a25d7/cr5c00047_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7fc4ddaf66bf/cr5c00047_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/43792a247380/cr5c00047_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/54dfceeb60c4/cr5c00047_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/5f574e45d38e/cr5c00047_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/a4c0d995da05/cr5c00047_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/d0a597319e60/cr5c00047_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/716838465dee/cr5c00047_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b606c3d8ff49/cr5c00047_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/637a1876ec1c/cr5c00047_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/ecf766307237/cr5c00047_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/59d1ba86d169/cr5c00047_0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/4e7725dc08fa/cr5c00047_0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/3c3e40be6212/cr5c00047_0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7c836445c678/cr5c00047_0029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/03069caba0f2/cr5c00047_0030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/20d0e7f4ad59/cr5c00047_0031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/eada6ea753d3/cr5c00047_0032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/be5546574f7b/cr5c00047_0033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/421cd0570cb4/cr5c00047_0035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/346970ba7640/cr5c00047_0037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/686ec9ab189c/cr5c00047_0039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0ab5395194b8/cr5c00047_0041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/29057f07eb93/cr5c00047_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/cdfef029c4d5/cr5c00047_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/d44d552239c5/cr5c00047_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b2386998f49d/cr5c00047_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0a5f9c17ba3d/cr5c00047_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7b935bbb60c8/cr5c00047_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/368d999275fd/cr5c00047_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/affdac94b69e/cr5c00047_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0de7e0fbd624/cr5c00047_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/9e804f303d3f/cr5c00047_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/60357a2d49ff/cr5c00047_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b80c8754d748/cr5c00047_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/95efc8dfc595/cr5c00047_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/9c2e0c83473c/cr5c00047_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/e15a169a25d7/cr5c00047_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7fc4ddaf66bf/cr5c00047_0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/43792a247380/cr5c00047_0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/54dfceeb60c4/cr5c00047_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/5f574e45d38e/cr5c00047_0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/a4c0d995da05/cr5c00047_0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/d0a597319e60/cr5c00047_0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/716838465dee/cr5c00047_0022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/b606c3d8ff49/cr5c00047_0023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/637a1876ec1c/cr5c00047_0024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/ecf766307237/cr5c00047_0025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/59d1ba86d169/cr5c00047_0026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/4e7725dc08fa/cr5c00047_0027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/3c3e40be6212/cr5c00047_0028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/7c836445c678/cr5c00047_0029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/03069caba0f2/cr5c00047_0030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/20d0e7f4ad59/cr5c00047_0031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/eada6ea753d3/cr5c00047_0032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/be5546574f7b/cr5c00047_0033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/421cd0570cb4/cr5c00047_0035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/346970ba7640/cr5c00047_0037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/686ec9ab189c/cr5c00047_0039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf10/12355711/0ab5395194b8/cr5c00047_0041.jpg

相似文献

[1]
Supramolecular Materials and Strategies for Bioorthogonal Chemical Transformations.

Chem Rev. 2025-8-13

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Aspects of Genetic Diversity, Host Specificity and Public Health Significance of Single-Celled Intestinal Parasites Commonly Observed in Humans and Mostly Referred to as 'Non-Pathogenic'.

APMIS. 2025-9

[4]
Sexual Harassment and Prevention Training

2025-1

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Strategies to improve smoking cessation rates in primary care.

Cochrane Database Syst Rev. 2021-9-6

[7]
From simple delivery to multimodal systems: the critical role of macromolecular platforms in bioorthogonal drug synthesis.

J Mater Chem B. 2025-7-30

[8]
Short-Term Memory Impairment

2025-1

[9]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[10]
Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications.

Acc Chem Res. 2025-6-3

本文引用的文献

[1]
Reactive Oxygen Species-Instructed Supramolecular Assemblies Enable Bioorthogonally Activatable Protein Degradation for Pancreatic Cancer.

J Am Chem Soc. 2025-5-28

[2]
Light-Triggered Bioorthogonal Nanozyme Hydrogels for Prodrug Activation and Treatment of Bacterial Biofilms.

ACS Appl Mater Interfaces. 2025-5-7

[3]
On-Membrane Supramolecular Assemblies Serving as Bioorthogonal Gating for Melphalan.

Angew Chem Int Ed Engl. 2025-7

[4]
Ultrahigh-Affinity Molecular Recognition in Water and Biomedical Applications.

Angew Chem Int Ed Engl. 2025-7

[5]
An Activatable Caged Palladium Nanocomposite for Targeted Cancer Therapy.

Angew Chem Int Ed Engl. 2025-6-2

[6]
Not So Bioorthogonal Chemistry.

J Am Chem Soc. 2025-3-12

[7]
Small Molecule Drugs Triggered the Activation of Macrocycle Masked Proteins.

Nano Lett. 2025-2-26

[8]
Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology.

Adv Sci (Weinh). 2025-3

[9]
Dynamic supramolecular snub cubes.

Nature. 2025-1

[10]
Click-and-Release Formation of Urea Bonds in Living Cells Enabled by Micelle Nanoreactors.

Angew Chem Int Ed Engl. 2025-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索