Vedrtnam Ajitanshu, Kalauni Kishor, Palou M T
Institute of Construction and Architecture, Slovak Academy of Science, Bratislava, 84503, Slovakia.
Department of Mechanical Engineering, Invertis University, Bareilly, 243001, UP, India.
Sci Rep. 2025 Aug 1;15(1):28155. doi: 10.1038/s41598-025-13562-7.
Bacteria-based self-healing concrete offers a sustainable solution to extend the service life of infrastructure by autonomously sealing cracks through microbial calcium carbonate precipitation. However, under fire conditions, the survival of encapsulated bacteria remains uncertain due to extreme temperatures that compromise biological activity and structural integrity. This study introduces a validated heat transfer model to estimate how long encapsulated bacteria can survive during fire exposure following ISO 834 conditions. The model incorporates radial heat diffusion, thermal properties of multi-layer encapsulation, and bacterial inactivation thresholds. Experimental data from our earlier study, including additional unpublished experimental insights, are used to validate the model across temperatures ranging from 200 °C to 800 °C. Simulations showed that carbon fiber-cement paste encapsulation can slow heat entry and help bacteria survive for nearly 20 h at 200 °C and about 4 h at 800 °C. In contrast, gelatin-based encapsulations degraded rapidly and failed to protect bacteria beyond 200 °C. Sensitivity analysis demonstrated that encapsulation thickness critically influences survival, with layers ≥ 1.75 mm providing significantly longer protection. This modelling framework, validated using prior experimental results on bacterial viability under fire exposure, provides a predictive basis for evaluating microbial survival in self-healing concrete systems employing multilayer encapsulation. The findings provide practical insights into optimizing encapsulation strategies to preserve bacterial functionality and enable post-fire self-healing in concrete structures.
基于细菌的自修复混凝土提供了一种可持续的解决方案,通过微生物碳酸钙沉淀自动密封裂缝来延长基础设施的使用寿命。然而,在火灾条件下,由于极端温度会损害生物活性和结构完整性,封装细菌的存活情况仍不确定。本研究引入了一个经过验证的传热模型,以估计在遵循ISO 834条件的火灾暴露期间封装细菌能够存活多长时间。该模型纳入了径向热扩散、多层封装的热性能以及细菌失活阈值。我们早期研究的实验数据,包括额外未发表的实验见解,被用于在200°C至800°C的温度范围内验证该模型。模拟结果表明,碳纤维 - 水泥浆封装可以减缓热量进入,使细菌在200°C下能存活近20小时,在800°C下能存活约4小时。相比之下,基于明胶的封装迅速降解,在超过200°C时无法保护细菌。敏感性分析表明,封装厚度对存活情况有至关重要的影响,厚度≥1.75毫米的层提供的保护时间显著更长。这个建模框架,利用先前关于火灾暴露下细菌活力的实验结果进行了验证,为评估采用多层封装的自修复混凝土系统中微生物的存活情况提供了预测依据。这些发现为优化封装策略以保持细菌功能并实现混凝土结构火灾后的自修复提供了实际见解。