Bhaskar Ashwin, Astrof Sophie
School of Arts and Sciences Honors Program, Rutgers University, New Brunswick, New Jersey, USA.
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
Dev Dyn. 2025 Aug 2. doi: 10.1002/dvdy.70066.
The International Mouse Phenotyping Consortium (IMPC) has generated thousands of knockout mouse lines, many of which exhibit embryonic or perinatal lethality. Using micro-computed tomography (micro-CT), the IMPC has created and publicly released three-dimensional image data sets of embryos from these lethal and subviable lines. In this study, we leveraged this data set to screen homozygous null mutants for anomalies in secondary palate development. We analyzed optical sections from 2987 embryos at embryonic days E15.5 and E18.5, representing 484 homozygous mutant lines.
Our analysis identified 44 novel genes implicated in palatogenesis. Gene set enrichment analysis highlighted biological processes and pathways relevant to palate development and uncovered 18 genes jointly regulating the development of the eye and the palate. These findings present a valuable resource for further research, offer novel insights into the molecular mechanisms underlying palatogenesis, and provide important context for understanding the etiology of rare human congenital disorders involving malformations of the palate and other organs.
国际小鼠表型分析联盟(IMPC)已培育出数千种基因敲除小鼠品系,其中许多表现出胚胎期或围产期致死性。利用微型计算机断层扫描(micro-CT),IMPC创建并公开了来自这些致死和亚存活品系胚胎的三维图像数据集。在本研究中,我们利用该数据集筛选纯合无效突变体的次生腭发育异常情况。我们分析了来自2987个胚胎在胚胎期E15.5和E18.5的光学切片,这些胚胎代表484个纯合突变体系。
我们的分析确定了44个与腭形成相关的新基因。基因集富集分析突出了与腭发育相关的生物学过程和途径,并发现了18个共同调节眼睛和腭发育的基因。这些发现为进一步研究提供了宝贵资源,对腭形成的分子机制提供了新见解,并为理解涉及腭和其他器官畸形的罕见人类先天性疾病的病因提供了重要背景。