文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于转录组数据和孟德尔随机化分析探索膀胱癌免疫相关基因及潜在治疗靶点

Exploring of bladder cancer immune-related genes and potential therapeutic targets based on transcriptomic data and Mendelian randomization analysis.

作者信息

Xu Zhangxiao, Yang Juan, Ma Yira, Tao Bo, He Yunpeng, Wu Jian, Zhao Yuan, Niu Yuanjian, Wang Lijun

机构信息

Department of Urinary Surgery, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Anning, China.

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.

出版信息

Front Immunol. 2025 Jul 18;16:1607098. doi: 10.3389/fimmu.2025.1607098. eCollection 2025.


DOI:10.3389/fimmu.2025.1607098
PMID:40755754
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12313568/
Abstract

BACKGROUND: Despite advancements in clinical treatment modalities, immune-related molecular mechanisms underlying bladder cancer remain unclear. Therefore, this study aimed to identify immune-related biomarkers and potential therapeutic targets for bladder cancer, thereby contributing to the development of novel therapeutic interventions. METHODS: By integrating data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and genome-wide association study (GWAS) databases, combined with differential expression analysis, weighted gene co-expression network analysis (WGCNA), and Mendelian randomization analysis, key immune-related genes in bladder cancer were identified. The correlation between these key genes and immune cell infiltration was also analyzed. The diagnostic efficacy of the key genes was evaluated using Receiver Operating Characteristic (ROC) curves and validated using independent public datasets. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to confirm the potential value of these molecular markers in bladder cancer. RESULTS: Differential expression analysis revealed 2,033 bladder cancer-related genes. WGCNA identified 1,391 immune-related genes and Mendelian randomization analysis identified 187 candidate genes with causal relationships. Eight significantly downregulated genes were identified: LIMS2, TP53INP2, IRAK3, STX2, CYP27A1, IL11RA, KCNMB1, and PDLM7. These genes were significantly associated with immune cell infiltration and exhibited good diagnostic efficacy, as demonstrated by ROC curve analysis and validated in independent public datasets. Furthermore, qRT-PCR experiments showed that LIMS2, IRAK3, STX2, IL11RA, KCNMB1, and PDLM7 were significantly downregulated in the tumor group, consistent with the bioinformatic analysis results, suggesting their potential clinical value. CONCLUSION: This study identified six immunoregulatory genes that were significantly negatively associated with bladder cancer risk. These genes may serve not only as potential biomarkers for bladder cancer immunity but also contribute to a deeper understanding of the molecular mechanisms of bladder cancer.

摘要

背景:尽管临床治疗方式取得了进展,但膀胱癌潜在的免疫相关分子机制仍不清楚。因此,本研究旨在识别膀胱癌的免疫相关生物标志物和潜在治疗靶点,从而为新型治疗干预措施的开发做出贡献。 方法:通过整合来自癌症基因组图谱(TCGA)、基因表达综合数据库(GEO)和全基因组关联研究(GWAS)数据库的数据,结合差异表达分析、加权基因共表达网络分析(WGCNA)和孟德尔随机化分析,确定了膀胱癌中关键的免疫相关基因。还分析了这些关键基因与免疫细胞浸润之间的相关性。使用受试者工作特征(ROC)曲线评估关键基因的诊断效能,并使用独立的公共数据集进行验证。最后,进行定量实时聚合酶链反应(qRT-PCR)以确认这些分子标志物在膀胱癌中的潜在价值。 结果:差异表达分析揭示了2033个与膀胱癌相关的基因。WGCNA识别出1391个免疫相关基因,孟德尔随机化分析识别出187个具有因果关系的候选基因。确定了8个显著下调的基因:LIMS2、TP53INP2、IRAK3、STX2、CYP27A1、IL11RA、KCNMB1和PDLM7。这些基因与免疫细胞浸润显著相关,并表现出良好的诊断效能,ROC曲线分析证明了这一点,并在独立公共数据集中得到验证。此外,qRT-PCR实验表明,LIMS2、IRAK3、STX2、IL11RA、KCNMB1和PDLM7在肿瘤组中显著下调,与生物信息学分析结果一致,表明它们具有潜在的临床价值。 结论:本研究确定了六个与膀胱癌风险显著负相关的免疫调节基因。这些基因不仅可能作为膀胱癌免疫的潜在生物标志物,还有助于更深入地了解膀胱癌的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/1de4771d0620/fimmu-16-1607098-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/405a59d628e7/fimmu-16-1607098-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/1c5a85ab0afc/fimmu-16-1607098-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/febbae007544/fimmu-16-1607098-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/eb1fe7e7aff5/fimmu-16-1607098-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/43fd6f091378/fimmu-16-1607098-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/392c455506c1/fimmu-16-1607098-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/78b3b47f3ea5/fimmu-16-1607098-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/0088c292e14b/fimmu-16-1607098-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/140df9647037/fimmu-16-1607098-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/1de4771d0620/fimmu-16-1607098-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/405a59d628e7/fimmu-16-1607098-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/1c5a85ab0afc/fimmu-16-1607098-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/febbae007544/fimmu-16-1607098-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/eb1fe7e7aff5/fimmu-16-1607098-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/43fd6f091378/fimmu-16-1607098-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/392c455506c1/fimmu-16-1607098-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/78b3b47f3ea5/fimmu-16-1607098-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/0088c292e14b/fimmu-16-1607098-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/140df9647037/fimmu-16-1607098-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec0/12313568/1de4771d0620/fimmu-16-1607098-g010.jpg

相似文献

[1]
Exploring of bladder cancer immune-related genes and potential therapeutic targets based on transcriptomic data and Mendelian randomization analysis.

Front Immunol. 2025-7-18

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Characterization of novel anoikis-related genes as prognostic biomarkers and key determinants of the immune microenvironment in esophageal cancer.

Front Immunol. 2025-7-11

[4]
The novel diagnostic markers for systemic lupus erythematosus and periodontal disease.

Front Immunol. 2025-7-22

[5]
Developing a Panel of Shared Susceptibility Genes as Diagnostic Biomarkers for chronic obstructive pulmonary disease and Heart Failure.

Comput Biol Med. 2025-9

[6]
LYN and CYBB are pivotal immune and inflammatory genes as diagnostic biomarkers in recurrent spontaneous abortion.

Front Immunol. 2025-7-7

[7]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[8]
Bridging aging, immunity, and atherosclerosis: novel insights into senescence-related genes.

Front Immunol. 2025-6-19

[9]
Identification of biomarkers associated with coronary artery disease and non-alcoholic fatty liver disease by bioinformatics analysis and machine learning.

Sci Rep. 2025-1-28

[10]
Immune and genetic landscapes of biliary atresia: a pathway to precision medicine.

BMC Pediatr. 2025-7-15

本文引用的文献

[1]
Advancing personalized, predictive, and preventive medicine in bladder cancer: a multi-omics and machine learning approach for novel prognostic modeling, immune profiling, and therapeutic target discovery.

Front Immunol. 2025-4-22

[2]
Single-cell RNA sequencing reveals a fibroblast gene signature that promotes T-cell infiltration in muscle-invasive bladder cancer.

Commun Biol. 2025-5-3

[3]
Integrating microbial GWAS and single-cell transcriptomics reveals associations between host cell populations and the gut microbiome.

Nat Microbiol. 2025-5

[4]
The causal nexus between diverse smoking statuses, potential therapeutic targets, and NSCLC: insights from Mendelian randomization and mediation analysis.

Front Oncol. 2024-11-4

[5]
Comprehensive Analysis of Prognostic Alternative Splicing Signatures in Tumor Immune Infiltration in Bladder Cancer.

Recent Pat Anticancer Drug Discov. 2025

[6]
Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression.

Clin Transl Oncol. 2025-4

[7]
Exploring the relationship between the interleukin family and lung adenocarcinoma through Mendelian randomization and RNA sequencing analysis.

Discov Oncol. 2024-9-12

[8]
Unraveling pancreatic ductal adenocarcinoma immune prognostic signature through a naive B cell gene set.

Cancer Lett. 2024-7-10

[9]
Causal effects of gut microbiota on appendicitis: a two-sample Mendelian randomization study.

Front Cell Infect Microbiol. 2023

[10]
Causal associations between liver traits and Colorectal cancer: a Mendelian randomization study.

BMC Med Genomics. 2023-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索