Cakir Nilufer, Oncel Hatice, Ozkan Aylin, Bicak Dilan, Akgun Bas Sibel, Mustafaoglu Nur
Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkiye.
ILKO, Sancaktepe 34885, Istanbul, Turkiye.
Int J Pharm X. 2025 Jul 23;10:100367. doi: 10.1016/j.ijpx.2025.100367. eCollection 2025 Dec.
Antibody-conjugated nanoparticles (ACNPs), particularly immunoliposomes (ILs), have gained significant attention in cancer treatment due to their enhanced efficacy and superior tissue penetration. However, their high production costs and technical challenges underscore the need for more cost-effective alternatives. Niosomes, with their lower production costs, improved stability, and biocompatibility, have emerged as promising alternatives to liposomes in drug delivery. This study introduces immunoniosomes (INs), a novel class of antibody-conjugated niosomes, through two conjugation strategies: (i) UV-NBS, a site-specific covalent conjugation method utilizing an indole ring structure for moderate binding to the variable regions of antibodies and Fab fragments, and (ii) EDC/NHS chemistry, which conjugates antibodies to carboxylated niosomes via primary amines on lysine sidechains. Bevacizumab, a monoclonal antibody targeting VEGF and approved for the treatment of various cancers including glioblastoma multiforme (GBM), was used as a model therapeutic. Both Bevacizumab and its Fab fragment were conjugated to niosomes and evaluated in U87 glioma cells (overexpressing VEGF) and human umbilical vein endothelial cells (HUVECs) (representing normal VEGF expression). Physicochemical characterization of the conjugated niosomes confirmed hydrodynamic sizes ranging from 100 to 200 nm, neutral surface charge, and dispersity indices below 0.5-properties critical for effective cellular penetration and drug delivery. Cellular toxicity assays, conducted at a 10× dilution from commonly reported concentrations, highlighted the role of the autocrine loop in U87 glioblastoma cells. Importantly, specific Nio-Fab conjugate formulations, created through both site-specific and randomized conjugation strategies, exhibited enhanced cytotoxicity toward U87 cells while sparing healthy endothelial HUVEC cells. In summary, this research establishes novel conjugation strategies to produce stable, site-specific, and randomized antibody-niosomal conjugates with enhanced half-life and selective toxicity against GBM cells. By offering an alternative route for antibody delivery through niosomal nanocarriers, these findings open new avenues for the development of more effective GBM therapeutics, warranting further non-clinical and clinical investigations.
抗体偶联纳米颗粒(ACNP),尤其是免疫脂质体(IL),因其增强的疗效和卓越的组织穿透性在癌症治疗中受到了广泛关注。然而,其高昂的生产成本和技术挑战凸显了对更具成本效益的替代方案的需求。脂质体具有较低的生产成本、更好的稳定性和生物相容性,已成为药物递送中脂质体的有前景的替代方案。本研究通过两种偶联策略引入了免疫脂质体(IN),这是一类新型的抗体偶联脂质体:(i)UV-NBS,一种位点特异性共价偶联方法,利用吲哚环结构与抗体和Fab片段的可变区进行适度结合;(ii)EDC/NHS化学法,通过赖氨酸侧链上的伯胺将抗体与羧化脂质体偶联。贝伐单抗是一种靶向VEGF的单克隆抗体,已被批准用于治疗包括多形性胶质母细胞瘤(GBM)在内的多种癌症,用作模型治疗药物。贝伐单抗及其Fab片段均与脂质体偶联,并在U87胶质瘤细胞(VEGF过表达)和人脐静脉内皮细胞(HUVEC)(代表正常VEGF表达)中进行评估。偶联脂质体的物理化学表征证实其流体动力学尺寸范围为100至200nm,表面电荷呈中性,分散指数低于0.5,这些特性对于有效的细胞穿透和药物递送至关重要。细胞毒性试验在通常报道浓度的10倍稀释下进行,突出了自分泌环在U87胶质母细胞瘤细胞中的作用。重要的是,通过位点特异性和随机偶联策略创建的特定Nio-Fab偶联物制剂对U87细胞表现出增强的细胞毒性,同时对健康的内皮HUVEC细胞具有保护作用。总之,本研究建立了新的偶联策略,以生产具有稳定、位点特异性和随机化的抗体-脂质体偶联物,其半衰期延长且对GBM细胞具有选择性毒性。通过提供通过脂质体纳米载体进行抗体递送的替代途径,这些发现为开发更有效的GBM治疗方法开辟了新途径,值得进一步进行非临床和临床研究。
Cochrane Database Syst Rev. 2014-9-22
Arch Ital Urol Androl. 2025-6-30
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2024-6-3
Cochrane Database Syst Rev. 2017-6-22
Curr Neurol Neurosci Rep. 2024-5
Beilstein J Nanotechnol. 2023-9-4
Cancer Biol Med. 2021-8-15
J Exp Clin Cancer Res. 2022-4-15
AAPS PharmSciTech. 2021-2-11
Cancer Treat Rev. 2020-3-26