Suppr超能文献

铬改性氮化硼对硫氧化物选择性检测的理论研究

Theoretical Study of SO Selective Detection from the Cr-Modified BN.

作者信息

Sousa Natanael de Sousa, Silva Adilson Luís Pereira, Varela Júnior Jaldyr de Jesus Gomes, Rodrigues Nailton Martins

机构信息

Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil.

Universidade Estadual do Maranhão, 65055-310 São Luís, MA, Brazil.

出版信息

ACS Omega. 2025 Jun 24;10(29):31789-31800. doi: 10.1021/acsomega.5c02977. eCollection 2025 Jul 29.

Abstract

Sulfur dioxide is a toxic gas with serious environmental and health implications, making the development of selective and efficient sensors an urgent need. In this work, we investigate, using density functional theory (DFT)/B3LYP-D3/6-31G-(d,p) calculations, the potential of BN nanocages functionalized with Cr in different configurations (doped, decorated, and encapsulated) for application in SO chemical sensing. The results show that the encapsulated configuration (Cr@BN) exhibits the best combination of properties, including high electronic sensitivity (Δ = 79.3%), moderate adsorption energy ( = -0.96 eV), and an appropriate recovery time (τ = 167 s), key parameters for reusable sensors under atmospheric conditions. In addition, the system demonstrates high selectivity toward interfering gases such as CO, CO, COCl, CH, HS, N, and HO, corroborated by molecular dynamics simulations. The data analysis suggests that Cr functionalization represents a promising strategy for SO sensor design, although the system's performance remains dependent on the adsorption energy range and the experimental feasibility of metal encapsulation.

摘要

二氧化硫是一种具有严重环境和健康影响的有毒气体,因此迫切需要开发选择性高且高效的传感器。在这项工作中,我们使用密度泛函理论(DFT)/B3LYP-D3/6-31G-(d,p)计算方法,研究了不同构型(掺杂、修饰和封装)的Cr功能化BN纳米笼在SO化学传感中的应用潜力。结果表明,封装构型(Cr@BN)展现出最佳的性能组合,包括高电子灵敏度(Δ = 79.3%)、适中的吸附能( = -0.96 eV)以及合适的恢复时间(τ = 167 s),这些都是大气条件下可重复使用传感器的关键参数。此外,通过分子动力学模拟证实,该系统对诸如CO、CO、COCl、CH、HS、N和HO等干扰气体具有高选择性。数据分析表明,Cr功能化是SO传感器设计的一种有前景的策略,尽管该系统的性能仍取决于吸附能范围以及金属封装的实验可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b27/12311700/1b1f8023fbd5/ao5c02977_0001.jpg

相似文献

1
Theoretical Study of SO Selective Detection from the Cr-Modified BN.
ACS Omega. 2025 Jun 24;10(29):31789-31800. doi: 10.1021/acsomega.5c02977. eCollection 2025 Jul 29.
4
Computational insights into Li cluster-based gas sensors.
J Mol Graph Model. 2025 Nov;140:109128. doi: 10.1016/j.jmgm.2025.109128. Epub 2025 Jul 26.
5
6
Interaction of Anagrelide drug molecule on pristine and doped boron nitride nanocages: a DFT, RDG, PCM and QTAIM investigation.
J Biomol Struct Dyn. 2023 May;41(8):3413-3429. doi: 10.1080/07391102.2022.2049369. Epub 2022 Mar 11.
7
Gas-Sensing Mechanisms and Detection Optimization of ZnO/TiO-MoTe Composites for CFSOF Decomposition Products.
Langmuir. 2025 Jul 1;41(25):16610-16624. doi: 10.1021/acs.langmuir.5c02030. Epub 2025 Jun 17.
9
Application of Cs/GO/TiO as gas sensor.
Sci Rep. 2025 Aug 25;15(1):31182. doi: 10.1038/s41598-025-14525-8.
10
Computational insights into BN nanocage as a promising carrier for mesalazine delivery: a DFT study.
Comput Biol Chem. 2025 Jul 3;119:108585. doi: 10.1016/j.compbiolchem.2025.108585.

本文引用的文献

1
FeO-Functionalized MoS Nanostructure Sensor for High-Sensitivity and Low-Level SO Detection.
ACS Sens. 2025 May 23;10(5):3412-3422. doi: 10.1021/acssensors.4c03297. Epub 2025 Apr 28.
4
Metal-organic frameworks (MOFs) toward SO detection.
Chem Soc Rev. 2025 May 6;54(9):4135-4163. doi: 10.1039/d4cs00997e.
5
Revealing the Role of Nanocages ( = B, In; = N, Sb) in NH Gas Adsorption: toward Gas Sensor Application.
ACS Omega. 2025 Jan 23;10(4):3361-3374. doi: 10.1021/acsomega.4c06143. eCollection 2025 Feb 4.
6
Bimetallic Phthalocyanine Monolayers as Promising Materials for Toxic HS, SO, and SOF Gas Detection: Insights from DFT Calculations.
Langmuir. 2025 Feb 18;41(6):4059-4075. doi: 10.1021/acs.langmuir.4c04401. Epub 2025 Feb 6.
7
Phosphorus-doped T-graphene nanocapsule toward O and SO gas sensing: a DFT and QTAIM analysis.
Sci Rep. 2024 Feb 12;14(1):3467. doi: 10.1038/s41598-024-54110-z.
9
Gas-Phase Interaction of CO, CO, HS, NH, NO, NO, and SO with ZnO and Zn Atomic Clusters.
ACS Omega. 2023 May 31;8(23):20621-20633. doi: 10.1021/acsomega.3c01177. eCollection 2023 Jun 13.
10
Transition Metal-Decorated BN-X (X = Au, Cu, Ni, Os, Pt, and Zn) Nanoclusters as Biosensors for Carboplatin.
ACS Omega. 2023 Mar 7;8(11):10006-10021. doi: 10.1021/acsomega.2c07250. eCollection 2023 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验