Suppr超能文献

互穿聚合物网络水凝胶组合物改变封装的间充质干细胞的铺展和体内降解行为。

Interpenetrating Polymer Network Hydrogel Composition Alters Encapsulated MSC Spreading and In Vivo Degradation Behavior.

作者信息

Ifergan-Azriel Liaura, Bar-Am Orit, Saar Galit, Cohen Talia, Loebel Claudia, Burdick Jason A, Seliktar Dror

机构信息

The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St., Haifa 3109601, Israel.

出版信息

ACS Biomater Sci Eng. 2025 Sep 8;11(9):5586-5599. doi: 10.1021/acsbiomaterials.5c00980. Epub 2025 Aug 4.

Abstract

An interpenetrating polymer network (IPN) hydrogel was developed for the three-dimensional (3D) culture of multipotent mesenchymal stromal cells (MSCs) with the aim of independently controlling cell spreading and material modulus. Based on our previous studies, we formulated a semisynthetic material composed of two networks: a covalent network of poly(ethylene glycol) (PEG)-fibrinogen (PF) and a second guest-host (GH) network of hyaluronic acid (HA) coupled to β-cyclodextrin (CD) and adamantane (Ad). The PF network provided cell attachment, precise control over modulus through the incorporation of additional PEG-diacrylate (PEG-DA) cross-linking, and proteolytic degradability. The GH-HA network contributed to the hydrogel's dynamic properties through enhanced viscoelasticity. This dynamic versatility enabled MSCs to better spread and grow in the IPN, even within highly cross-linked formulations. We also observed that the IPN facilitated significantly faster cell spreading kinetics, independent of the material modulus, when compared to single-network PF hydrogels. Hydrogel biodegradation was also characterized after subcutaneous implantation for up to 8 weeks by using MRI analysis. Increasing the PEG-DA cross-linking of the IPN significantly accelerated the in vivo bioresorption, whereas the biodegradation in single-network PF hydrogels was significantly delayed by the additional PEG-DA. We conclude that the covalent cross-links maintain the bulk structural integrity of the hydrogel, whereas the reversible GH interactions provide more localized adaptability for cell-mediated proteolysis and matrix remodeling, possibly through increased network heterogeneity. This design effectively mimics the ECM by providing a more supportive environment for encapsulated cells that allows them to adhere, spread, and proliferate, which may be useful in various MSC-based tissue engineering and regenerative medicine applications.

摘要

为了独立控制细胞铺展和材料模量,开发了一种互穿聚合物网络(IPN)水凝胶用于多能间充质基质细胞(MSC)的三维(3D)培养。基于我们之前的研究,我们制备了一种由两个网络组成的半合成材料:聚乙二醇(PEG)-纤维蛋白原(PF)的共价网络和与β-环糊精(CD)及金刚烷(Ad)偶联的透明质酸(HA)的第二个客体-主体(GH)网络。PF网络提供细胞附着,通过加入额外的聚乙二醇二丙烯酸酯(PEG-DA)交联精确控制模量,并具有蛋白水解降解性。GH-HA网络通过增强粘弹性有助于水凝胶的动态特性。这种动态多功能性使MSC能够在IPN中更好地铺展和生长,即使在高度交联的配方中也是如此。我们还观察到,与单网络PF水凝胶相比,IPN促进细胞铺展动力学显著加快,且与材料模量无关。通过磁共振成像(MRI)分析对皮下植入长达8周后的水凝胶生物降解情况进行了表征。增加IPN中PEG-DA的交联显著加速了体内生物吸收,而单网络PF水凝胶中的生物降解则因额外的PEG-DA而显著延迟。我们得出结论,共价交联维持了水凝胶的整体结构完整性,而可逆的GH相互作用为细胞介导的蛋白水解和基质重塑提供了更多局部适应性,可能是通过增加网络异质性实现的。这种设计通过为封装细胞提供更有利的环境来有效模拟细胞外基质(ECM),使细胞能够附着、铺展和增殖,这在各种基于MSC的组织工程和再生医学应用中可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验