Akbary Kutbuddin, Noureddin Mazen, Yayun Ren, Tai Dean, Boudes Pol
HistoIndex Pte Ltd, Singapore, Singapore.
Houston Methodist Hospital, Houston, Texas, USA.
Liver Int. 2025 Sep;45(9):e70258. doi: 10.1111/liv.70258.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major global cause of chronic liver disease, with the potential to progress from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Fibrosis is a key determinant of liver-related morbidity and mortality, highlighting the need for precise, reproducible assessment methods. This study aimed to develop and validate an Artificial Intelligence (AI)-based fibrosis detection algorithm using Second Harmonic Generation/Two Photon Excitation Fluorescence (SHG/TPEF) microscopy.
The algorithm integrates SHG/TPEF microscopy, which uses ultra-fast lasers to capture intrinsic optical signals from unstained liver biopsies, with Machine Learning (ML)-based image analysis. The resulting qFibrosis model quantifies collagen morphology to generate a continuous fibrosis index.
A standardised workflow was established, encompassing sample acquisition, SHG/TPEF imaging, region-specific analysis and collagen feature quantification. Each step of the AI-based ML of qFibrosis algorithm used to assess and quantify liver fibrosis is described in detail in this study.
This AI-driven approach enables accurate, continuous quantification of liver fibrosis, overcoming the variability of traditional histopathology. The qFibrosis model has potential as a standardised tool for therapeutic evaluation and disease monitoring in MASLD/MASH, representing a significant advancement in liver fibrosis assessment.
代谢功能障碍相关脂肪性肝病(MASLD)是全球慢性肝病的主要病因,有可能从脂肪变性发展为代谢功能障碍相关脂肪性肝炎(MASH)和肝硬化。纤维化是肝脏相关发病率和死亡率的关键决定因素,这凸显了对精确、可重复评估方法的需求。本研究旨在开发并验证一种基于人工智能(AI)的纤维化检测算法,该算法使用二次谐波产生/双光子激发荧光(SHG/TPEF)显微镜。
该算法将SHG/TPEF显微镜(利用超快激光从未染色的肝活检组织中捕获固有光学信号)与基于机器学习(ML)的图像分析相结合。由此产生的qFibrosis模型对胶原蛋白形态进行量化,以生成一个连续的纤维化指数。
建立了一个标准化工作流程,包括样本采集、SHG/TPEF成像、区域特异性分析和胶原蛋白特征量化。本研究详细描述了用于评估和量化肝纤维化的qFibrosis算法基于AI的ML的每一步。
这种由AI驱动的方法能够对肝纤维化进行准确、连续的量化,克服了传统组织病理学的变异性。qFibrosis模型有潜力作为MASLD/MASH治疗评估和疾病监测的标准化工具,代表了肝纤维化评估的重大进展。