Suppr超能文献

基于SHG/TPEF显微镜的人工智能纤维化检测算法的开发,用于MASH中完全量化的肝纤维化评估。

Development of AI Based Fibrosis Detection Algorithm by SHG/TPEF Microscopy for Fully Quantified Liver Fibrosis Assessment in MASH.

作者信息

Akbary Kutbuddin, Noureddin Mazen, Yayun Ren, Tai Dean, Boudes Pol

机构信息

HistoIndex Pte Ltd, Singapore, Singapore.

Houston Methodist Hospital, Houston, Texas, USA.

出版信息

Liver Int. 2025 Sep;45(9):e70258. doi: 10.1111/liv.70258.

Abstract

BACKGROUND AND AIMS

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major global cause of chronic liver disease, with the potential to progress from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Fibrosis is a key determinant of liver-related morbidity and mortality, highlighting the need for precise, reproducible assessment methods. This study aimed to develop and validate an Artificial Intelligence (AI)-based fibrosis detection algorithm using Second Harmonic Generation/Two Photon Excitation Fluorescence (SHG/TPEF) microscopy.

METHODS

The algorithm integrates SHG/TPEF microscopy, which uses ultra-fast lasers to capture intrinsic optical signals from unstained liver biopsies, with Machine Learning (ML)-based image analysis. The resulting qFibrosis model quantifies collagen morphology to generate a continuous fibrosis index.

RESULTS

A standardised workflow was established, encompassing sample acquisition, SHG/TPEF imaging, region-specific analysis and collagen feature quantification. Each step of the AI-based ML of qFibrosis algorithm used to assess and quantify liver fibrosis is described in detail in this study.

CONCLUSIONS

This AI-driven approach enables accurate, continuous quantification of liver fibrosis, overcoming the variability of traditional histopathology. The qFibrosis model has potential as a standardised tool for therapeutic evaluation and disease monitoring in MASLD/MASH, representing a significant advancement in liver fibrosis assessment.

摘要

背景与目的

代谢功能障碍相关脂肪性肝病(MASLD)是全球慢性肝病的主要病因,有可能从脂肪变性发展为代谢功能障碍相关脂肪性肝炎(MASH)和肝硬化。纤维化是肝脏相关发病率和死亡率的关键决定因素,这凸显了对精确、可重复评估方法的需求。本研究旨在开发并验证一种基于人工智能(AI)的纤维化检测算法,该算法使用二次谐波产生/双光子激发荧光(SHG/TPEF)显微镜。

方法

该算法将SHG/TPEF显微镜(利用超快激光从未染色的肝活检组织中捕获固有光学信号)与基于机器学习(ML)的图像分析相结合。由此产生的qFibrosis模型对胶原蛋白形态进行量化,以生成一个连续的纤维化指数。

结果

建立了一个标准化工作流程,包括样本采集、SHG/TPEF成像、区域特异性分析和胶原蛋白特征量化。本研究详细描述了用于评估和量化肝纤维化的qFibrosis算法基于AI的ML的每一步。

结论

这种由AI驱动的方法能够对肝纤维化进行准确、连续的量化,克服了传统组织病理学的变异性。qFibrosis模型有潜力作为MASLD/MASH治疗评估和疾病监测的标准化工具,代表了肝纤维化评估的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7215/12320568/bd74d5c8c65e/LIV-45-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验