Zheng Jialei, Chen Weijie, Wang Ziyue, Kang Shuaiqing, Dong Pengpeng, Yin Yue, Chen Haiyang, Cao Jianlei, Yuan Jixiang, Xu Guiying, Xu Jiacheng, Li Yaowen
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
Adv Mater. 2025 Aug 4:e10437. doi: 10.1002/adma.202510437.
Mixed halide wide-bandgap (WBG) perovskites, used in high-performance perovskite/organic tandem solar cells (TSCs), are prone to phase segregation under light irradiation. Particularly, the initial inhomogeneous halide phase distribution in WBG perovskites can accelerate the phase segregation under operational stressors, thus hindering scaling of TSCs that require high phase homogeneity. Here, a selective delayed crystallization strategy is proposed in which a functional agent (3-amino-5-fluorobenzamide; AFBA) is used to regulate the initial halide phase distribution. The -NH of AFBA, with a low electron-cloud density, shows a higher binding affinity with bromide than with iodide, thus selectively delaying the rapid crystallization of bromide; this phenomenon induces a homogeneous halide distribution across the film. The initial homogeneous film is phase-stable under operational stressors. As a result, the square-centimeter WBG perovskite front cell achieves a high efficiency of 18.61%. When stacked with organic subcells, the square-centimeter perovskite/organic TSC exhibits a remarkable efficiency of 25.21%, showing a weak-dependence of efficiency on size from 0.062 to 2.000 cm, as well as a prolonged operational lifetime with a T of 1500 h. Perovskite/organic TSCs are also connected in series with electrochromic devices to dynamically monitor the TSC performance via the color variation, providing insights for their future applications.
用于高性能钙钛矿/有机串联太阳能电池(TSC)的混合卤化物宽带隙(WBG)钙钛矿在光照下容易发生相分离。特别是,WBG钙钛矿中初始的不均匀卤化物相分布会在工作应力下加速相分离,从而阻碍需要高相均匀性的TSC的规模化生产。在此,提出了一种选择性延迟结晶策略,其中使用一种功能剂(3-氨基-5-氟苯甲酰胺;AFBA)来调节初始卤化物相分布。AFBA的-NH具有低电子云密度,与溴化物的结合亲和力高于碘化物,从而选择性地延迟溴化物的快速结晶;这种现象导致整个薄膜中卤化物分布均匀。初始均匀的薄膜在工作应力下是相稳定的。结果,平方厘米的WBG钙钛矿前电池实现了18.61%的高效率。当与有机子电池堆叠时,平方厘米的钙钛矿/有机TSC表现出25.21%的显著效率,效率对尺寸从0.062到2.000平方厘米的依赖性较弱,并且在1500小时的T条件下具有延长的工作寿命。钙钛矿/有机TSC还与电致变色器件串联连接,通过颜色变化动态监测TSC性能,为其未来应用提供了见解。