文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

β-连环蛋白缺乏对脂肪组织生理学的影响。

Effects of β-catenin deficiency on adipose tissue physiology.

作者信息

Uranga Romina M, Nishii Akira, Maung Jessica N, Mori Hiroyuki, Desrosiers Brian, Jacobs Jannis, Hoose Keegan S, Schill Rebecca L, Bagchi Devika P, Guak Hannah, Crewe Clair, Dinov Ivo D, Giles Erin D, Lumeng Carey N, MacDougald Ormond A

机构信息

University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA; Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; New College of Florida, Natural Sciences Division, Sarasota, FL, USA.

University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA.

出版信息

Mol Metab. 2025 Aug 7;100:102226. doi: 10.1016/j.molmet.2025.102226.


DOI:10.1016/j.molmet.2025.102226
PMID:40759324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12363599/
Abstract

OBJECTIVES: Compelling evidence from investigation of preclinical models and humans links canonical Wnt/β-catenin signaling to regulation of many aspects of white adipose tissue development and physiology. Dysregulation of this ancient pathway alters adiposity and metabolic homeostasis. Herein we explore how disruption of adipocyte Wnt/β-catenin signaling affects gene expression and crosstalk between cell types within adipose tissue. METHODS: To investigate mechanisms through which adipose tissue attempts to maintain homeostasis in the absence of β-catenin in adipocytes, we employed standard methods of metabolic phenotyping as well as bulk RNA sequencing, flow cytometry, single-cell RNA sequencing, and isolation of secreted extracellular vesicles. RESULTS: Our experiments reveal that male, but not female adipocyte-specific β-catenin knockout mice, Ctnnb1, have an increase in adiposity and insulin resistance. Whereas metabolic processes including fatty acid metabolism were suppressed in adipocytes, mitochondrial metabolism of immune cells was made more efficient, resulting in reduced reactive oxygen species in macrophages and dendritic cells. Deficiency of β-catenin in adipocytes altered the transcriptome of numerous stromal-vascular cell populations including adipose stem and progenitor cells, macrophages, and other immune cells. Homeostasis in white adipose tissue of Ctnnb1 mice is maintained in part by elevated expression of Ctnnb1 mRNA in endothelial cells and in secreted small extracellular vesicles. CONCLUSIONS: Our studies demonstrate the importance of adipocyte Wnt signaling for regulation of lipid and mitochondrial metabolic processes in stromal-vascular cells and adipocytes in adipose tissues. This research provides further support for an intercellular Wnt signaling network with compensatory capability to maintain homeostasis, and underscores importance of Wnt/β-catenin signaling for understanding adipose tissue physiology and pathophysiology.

摘要

目的:临床前模型和人体研究的有力证据表明,经典Wnt/β-连环蛋白信号传导与白色脂肪组织发育和生理的多个方面的调节相关。这一古老信号通路的失调会改变肥胖和代谢稳态。在此,我们探讨脂肪细胞Wnt/β-连环蛋白信号传导的破坏如何影响脂肪组织内细胞类型之间的基因表达和相互作用。 方法:为了研究在脂肪细胞中缺乏β-连环蛋白时脂肪组织维持稳态的机制,我们采用了代谢表型分析的标准方法以及批量RNA测序、流式细胞术、单细胞RNA测序和分泌细胞外囊泡的分离。 结果:我们的实验表明,雄性而非雌性脂肪细胞特异性β-连环蛋白敲除小鼠(Ctnnb1)的肥胖和胰岛素抵抗增加。虽然脂肪细胞中的脂肪酸代谢等代谢过程受到抑制,但免疫细胞的线粒体代谢效率提高,导致巨噬细胞和树突状细胞中的活性氧减少。脂肪细胞中β-连环蛋白的缺乏改变了许多基质血管细胞群体的转录组,包括脂肪干细胞和祖细胞、巨噬细胞及其他免疫细胞。Ctnnb1小鼠白色脂肪组织的稳态部分通过内皮细胞和分泌的小细胞外囊泡中Ctnnb1 mRNA表达的升高得以维持。 结论:我们的研究证明了脂肪细胞Wnt信号传导对调节脂肪组织中基质血管细胞和脂肪细胞的脂质及线粒体代谢过程的重要性。本研究为具有维持稳态补偿能力的细胞间Wnt信号网络提供了进一步支持,并强调了Wnt/β-连环蛋白信号传导对理解脂肪组织生理和病理生理的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/39fce3287985/figs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/06733aa35892/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/58aa27beb8a6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/e7170a497932/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/9bc2b9b1fc9f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/3071e12cc07f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/214115ec8e58/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/8c15545ee249/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/805c52a4a704/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/4bf3598a151c/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/8462a09838f4/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/032aeb4959fd/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/b52d09b4356b/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/7a7cc846e218/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/3f49753c8264/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/54e21f233a90/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/42cc95c14f5f/figs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/5245c68098b3/figs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/f8c5c1d134ee/figs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/2a931df7166b/figs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/39fce3287985/figs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/06733aa35892/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/58aa27beb8a6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/e7170a497932/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/9bc2b9b1fc9f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/3071e12cc07f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/214115ec8e58/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/8c15545ee249/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/805c52a4a704/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/4bf3598a151c/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/8462a09838f4/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/032aeb4959fd/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/b52d09b4356b/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/7a7cc846e218/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/3f49753c8264/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/54e21f233a90/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/42cc95c14f5f/figs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/5245c68098b3/figs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/f8c5c1d134ee/figs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/2a931df7166b/figs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/12363599/39fce3287985/figs12.jpg

相似文献

[1]
Effects of β-catenin deficiency on adipose tissue physiology.

Mol Metab. 2025-8-7

[2]
Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells.

Mol Metab. 2020-12

[3]
Norcholic Acid Promotes M1 Macrophage Polarization in Acute Pancreatitis by Activating the Wnt/β-Catenin Pathway.

Front Biosci (Landmark Ed). 2025-6-24

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
MMP19 in vascular smooth muscle cells protects against thoracic aortic aneurysm and dissection via the MMP19/Aggrecan/Wnt/β-catenin axis.

J Mol Cell Cardiol. 2025-5

[6]
CST2 promotes cell proliferation and regulates cell cycle by activating Wnt-β-catenin signalling pathway in serous ovarian cancer.

J Obstet Gynaecol. 2024-12

[7]
Calorie restriction in mice impairs cortical but not trabecular peak bone mass by suppressing bone remodeling.

J Bone Miner Res. 2024-8-21

[8]
A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.

J Virol. 2017-3-29

[9]
Targeting GSK-3β for adipose dysfunction and cardiovascular complications of metabolic disease: An entangled WNT/β-catenin question.

FASEB J. 2024-12-13

[10]
The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial-mesenchymal transition by phosphorylating β-catenin.

Cell Commun Signal. 2024-6-10

本文引用的文献

[1]
Reactive Oxygen Species (ROS) in Metabolic Disease-Don't Shoot the Metabolic Messenger.

Int J Mol Sci. 2025-3-14

[2]
LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity.

Commun Med (Lond). 2025-2-25

[3]
Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity.

J Biol Chem. 2025-1

[4]
IL-33 regulates adipogenesis via Wnt/β-catenin/PPAR-γ signaling pathway in preadipocytes.

J Transl Med. 2024-4-17

[5]
β-catenin inhibition disrupts the homeostasis of osteogenic/adipogenic differentiation leading to the development of glucocorticoid-induced osteonecrosis of the femoral head.

Elife. 2024-2-20

[6]
ATP7A-dependent copper sequestration contributes to termination of β-CATENIN signaling during early adipogenesis.

Mol Metab. 2024-2

[7]
The negative adipogenesis regulator is transcriptionally regulated by (TIS7) and translationally by its orthologue (SKMc15).

Elife. 2023-8-21

[8]
IL-35 inhibits adipogenesis via PPARγ-Wnt/β-catenin signaling pathway by targeting Axin2.

Int Immunopharmacol. 2023-9

[9]
The Wnt/β-catenin signaling pathway plays a role in drug-induced liver injury by regulating cytochrome P450 2E1 expression.

Toxicol Res. 2023-4-14

[10]
Classifying migraine using PET compressive big data analytics of brain's -opioid and D2/D3 dopamine neurotransmission.

Front Pharmacol. 2023-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索