Speth Kelly, Xie Jin, Song Qinghua, Mattie Mike, Kim Jenny J, Barrett David M, Andrade Jorge, Shen Rhine, Bedognetti Davide, Adhikary Sabina
Kite, a Gilead Company, Santa Monica, California, USA.
Kite, a Gilead Company, Santa Monica, California, USA
J Immunother Cancer. 2025 Aug 4;13(8):e011819. doi: 10.1136/jitc-2025-011819.
BACKGROUND: We aimed to develop an actionable and feasible prospective clinical model to estimate toxicity risk to assist chimeric antigen receptor (CAR) T-cell therapy providers with the management of patients with relapsed and/or refractory large B-cell lymphoma. METHODS: We conducted an observational, retrospective cohort study using secondary data from 390 patients treated with the CD19 CAR T-cell therapy axicabtagene ciloleucel under two prospective clinical trials, ZUMA-1 and ZUMA-7; these clinical trials enrolled patients with relapsed/refractory large B-cell lymphoma between 2015 and 2019. Using machine learning and statistical methods, we developed a classification model for identifying patients unlikely to experience early cytokine release syndrome (CRS) and neurological events (NE) of any grade. RESULTS: We found the use of prophylactic corticosteroids to be an important factor in remaining CRS-free and NE-free within the first 3 days post-treatment (p<0.001). We identified a top model for no early CRS/NE using a set of six pre-lymphodepletion clinicopathologic features: number of lines of prior systemic therapy, age, baseline tumor burden (as measured by sum of the product of the diameters), C-reactive protein, aspartate transaminase, and hemoglobin, which achieves a positive predictive value of 0.71 in the holdout validation cohort. Additionally, we find that predicted probabilities generated from the model are strongly associated with incidence of Grade 2 or higher NE. CONCLUSIONS: We illustrated that routine clinicopathologic variables can be used to identify patients at low risk of developing early post-treatment CRS and/or NE. Such knowledge can be used to help treating centers prospectively manage patient care, including consideration of outpatient treatment.
背景:我们旨在开发一种可操作且可行的前瞻性临床模型,以评估毒性风险,从而协助嵌合抗原受体(CAR)T细胞疗法的提供者管理复发和/或难治性大B细胞淋巴瘤患者。 方法:我们进行了一项观察性回顾性队列研究,使用了来自两项前瞻性临床试验ZUMA-1和ZUMA-7中接受CD19 CAR T细胞疗法阿基仑赛治疗的390例患者的二次数据;这些临床试验纳入了2015年至2019年间复发/难治性大B细胞淋巴瘤患者。我们使用机器学习和统计方法,开发了一种分类模型,用于识别不太可能发生任何级别的早期细胞因子释放综合征(CRS)和神经事件(NE)的患者。 结果:我们发现使用预防性皮质类固醇是治疗后前3天内无CRS和无NE的重要因素(p<0.001)。我们使用一组六个淋巴细胞清除前临床病理特征确定了一个无早期CRS/NE的顶级模型:既往全身治疗线数、年龄、基线肿瘤负荷(通过直径乘积之和测量)、C反应蛋白、天冬氨酸转氨酶和血红蛋白,该模型在验证队列中的阳性预测值为0.71。此外,我们发现该模型生成的预测概率与2级或更高等级NE的发生率密切相关。 结论:我们证明了常规临床病理变量可用于识别治疗后早期发生CRS和/或NE风险较低的患者。这些知识可用于帮助治疗中心前瞻性地管理患者护理,包括考虑门诊治疗。
Cochrane Database Syst Rev. 2021-9-13
Transplant Cell Ther. 2025-4-25
Transplant Cell Ther. 2024-11
Nat Rev Clin Oncol. 2024-7
Blood Cancer Discov. 2024-3-1
Transplant Cell Ther. 2022-9
N Engl J Med. 2022-2-17