Suppr超能文献

一种结合炎症指标和手术特征的远端胆管癌多算法预后模型。

A multi-algorithm prognostic model combining inflammatory indices and surgical features in distal cholangiocarcinoma.

作者信息

Yin Yi, Bai Luyuan, Mu Xinyue, Zhang Shan, Zhai Panpan

机构信息

Pediatrics Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.

School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.

出版信息

Front Oncol. 2025 Jul 21;15:1625703. doi: 10.3389/fonc.2025.1625703. eCollection 2025.

Abstract

BACKGROUND

Derived neutrophil-to-lymphocyte ratio (dNLR) is an emerging blood-based inflammatory biomarker previously reported to have prognostic value in various malignancies. This study aimed to investigate the prognostic significance of dNLR in patients with distal cholangiocarcinoma (dCCA) after curative resection.

METHODS

Clinicopathological data of patients with dCCA in our hospital from Jan.2014 to Jun.2024 was analyzed retrospectively. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive value of dNLR and to identify the optimal cutoff. Survival differences between groups stratified by dNLR were compared using Kaplan-Meier analysis. Candidate variables were screened through univariate analysis using Kaplan-Meier, random forest, Recursive Feature Elimination (RFE) and least absolute shrinkage and selection operator (LASSO) regression models. Multivariate Cox regression analysis identified independent prognostic factors, which were subsequently integrated into a predictive model visualized via a nomogram. Model performance was assessed using ROC curves, calibration curves, and decision curve analysis (DCA).

RESULTS

A total of 177 patients were enrolled in this study. ROC analysis revealed an area under the curve (AUC) of 0.707 for dNLR in predicting postoperative survival, with an optimal cutoff value of 1.60. Patients stratified into a low-dNLR group (≤ 1.60) demonstrated significantly improved recurrence-free survival (41 months) and overall survival (17 months) compared to those in the high-dNLR group (> 1.60) ( < 0.05). Univariate and multivariate combined with 3 machine learning analyses identified preoperative dNLR > 1.60 as an independent adverse prognostic factor for postoperative outcomes, incorporating with other independent predictors (preoperative total bilirubin, carbohydrate antigen 19-9 levels, T-stage, portal venous system invasion, and lymph node metastasis) further enhanced the predictive accuracy of the prognostic model.

CONCLUSION

A preoperative dNLR > 1.60 is an independent risk factor associated with poor prognosis in patients with dCCA. The clinical prediction model based on machine learning incorporating dNLR effectively predicts postoperative outcomes in this patient population.

摘要

背景

衍生中性粒细胞与淋巴细胞比值(dNLR)是一种新兴的基于血液的炎症生物标志物,此前报道其在各种恶性肿瘤中具有预后价值。本研究旨在探讨dNLR在根治性切除术后远端胆管癌(dCCA)患者中的预后意义。

方法

回顾性分析我院2014年1月至2024年6月dCCA患者的临床病理资料。进行受试者操作特征(ROC)曲线分析,以评估dNLR的预测价值并确定最佳临界值。采用Kaplan-Meier分析比较dNLR分层组之间的生存差异。通过使用Kaplan-Meier、随机森林、递归特征消除(RFE)和最小绝对收缩和选择算子(LASSO)回归模型的单变量分析筛选候选变量。多变量Cox回归分析确定独立预后因素,随后将其整合到通过列线图可视化的预测模型中。使用ROC曲线、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

本研究共纳入177例患者。ROC分析显示,dNLR预测术后生存的曲线下面积(AUC)为0.707,最佳临界值为1.60。与高dNLR组(>1.60)相比,分层为低dNLR组(≤1.60)的患者无复发生存期(41个月)和总生存期(17个月)显著改善(<0 .05)。单变量和多变量结合3种机器学习分析确定术前dNLR>1.60是术后结局的独立不良预后因素,与其他独立预测因素(术前总胆红素、糖类抗原19-9水平、T分期、门静脉系统侵犯和淋巴结转移)结合进一步提高了预后模型的预测准确性。

结论

术前dNLR>1.60是dCCA患者预后不良的独立危险因素。基于机器学习并纳入dNLR的临床预测模型可有效预测该患者群体的术后结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f44/12318768/e28cf31a9d67/fonc-15-1625703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验