文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过代谢组学、网络药理学和生物信息学探索华蟾素注射液抗骨肉瘤的潜在机制。

Explore the potential mechanism of Huachansu injection against osteosarcoma via metabolomics, network pharmacology and bioinformatics.

作者信息

Meng Jingjing, Zhang Xiangqi, Xiang Danfeng, Liang Hanlu, Zhao Shuai, Xu Lingyan, Yang Jiao, Chen JunJun, Zhang Jingxian, Han Yonglong

机构信息

Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.

College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.

出版信息

Chin Med. 2025 Aug 5;20(1):120. doi: 10.1186/s13020-025-01179-x.


DOI:10.1186/s13020-025-01179-x
PMID:40764575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12323198/
Abstract

AIM: Huachansu injection (HCSI) shows effective medicinal functions against osteosarcoma. This study aimed to reveal the underlying mechanisms of HCSI against osteosarcoma by integrating metabolomics, network pharmacology and bioinformatics. METHODS: Metabolomics was used to identify different metabolites and pathways. Network pharmacology was utilized to predict the potential targets of HCSI against osteosarcoma. Differentially expressed lncRNAs and miRNAs were screened and the corresponding lncRNAs-miRNAs-mRNAs network were constructed through the GEO database and miRcode database. Machine learning and immune infiltration analysis were performed on the key target obtained from the intersection of network pharmacology and bioinformatics. The binding affinity between active compounds of HCSI and potential targets was evaluated by molecular docking. The underlying mechanisms were further validated by RT-qPCR and immunoblotting. RESULTS: Lipid metabolism pathways were obtained by non-target metabolomics enrichment. A total of 44 HCSI targets associated with osteosarcoma were collected by network pharmacology. Intersection of the mRNAs obtained from ceRNA network with the above 44 targets yielded eight common targets. The main target HMGCR were obtained by machine learning and RT-qPCR. The BCYRN1-miR-27a-3p-HMGCR axis was subsequently screened as the primary ceRNA regulatory network in HSCI against osteosarcoma. Molecular docking also showed an excellent affinity between the active compounds of HCSI and HMGCR. In vitro experiments demonstrated that HCSI down-regulated HMGCR, thereby reduced intracellular cholesterol levels, and ultimately promoting osteosarcoma cell apoptosis. CONCLUSION: HCSI could inhibit osteosarcoma progression by regulating lipid metabolism through BCYRN1-miR-27a-3p-HMGCR axis, indicating that HCSI may provide insights for developing herbal medicine injection-based therapies for osteosarcoma.

摘要

目的:华蟾素注射液(HCSI)对骨肉瘤显示出有效的药用功能。本研究旨在通过整合代谢组学、网络药理学和生物信息学来揭示HCSI抗骨肉瘤的潜在机制。 方法:采用代谢组学鉴定不同的代谢物和途径。利用网络药理学预测HCSI抗骨肉瘤的潜在靶点。筛选差异表达的lncRNAs和miRNAs,并通过GEO数据库和miRcode数据库构建相应的lncRNAs - miRNAs - mRNAs网络。对从网络药理学和生物信息学交叉点获得的关键靶点进行机器学习和免疫浸润分析。通过分子对接评估HCSI活性化合物与潜在靶点之间的结合亲和力。通过RT - qPCR和免疫印迹进一步验证潜在机制。 结果:通过非靶向代谢组学富集获得脂质代谢途径。通过网络药理学收集了总共44个与骨肉瘤相关的HCSI靶点。从ceRNA网络获得的mRNA与上述44个靶点的交集产生了8个共同靶点。通过机器学习和RT - qPCR获得主要靶点HMGCR。随后筛选出BCYRN1 - miR - 27a - 3p - HMGCR轴作为HSCI抗骨肉瘤的主要ceRNA调控网络。分子对接还显示HCSI的活性化合物与HMGCR之间具有良好的亲和力。体外实验表明,HCSI下调HMGCR,从而降低细胞内胆固醇水平,并最终促进骨肉瘤细胞凋亡。 结论:HCSI可通过BCYRN1 - miR - 27a - 3p - HMGCR轴调节脂质代谢来抑制骨肉瘤进展,表明HCSI可能为开发基于中药注射液的骨肉瘤治疗方法提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/51527101ee9e/13020_2025_1179_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/57cbd77d3f86/13020_2025_1179_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/ca457897e068/13020_2025_1179_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/9dd01e4768bf/13020_2025_1179_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/ee2b6be9721e/13020_2025_1179_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/159041338716/13020_2025_1179_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/1bd6a6ac787b/13020_2025_1179_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/aee71067bbf0/13020_2025_1179_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/e497d61b6c8c/13020_2025_1179_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/e32e01158583/13020_2025_1179_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/51527101ee9e/13020_2025_1179_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/57cbd77d3f86/13020_2025_1179_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/ca457897e068/13020_2025_1179_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/9dd01e4768bf/13020_2025_1179_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/ee2b6be9721e/13020_2025_1179_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/159041338716/13020_2025_1179_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/1bd6a6ac787b/13020_2025_1179_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/aee71067bbf0/13020_2025_1179_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/e497d61b6c8c/13020_2025_1179_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/e32e01158583/13020_2025_1179_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea73/12323198/51527101ee9e/13020_2025_1179_Fig10_HTML.jpg

相似文献

[1]
Explore the potential mechanism of Huachansu injection against osteosarcoma via metabolomics, network pharmacology and bioinformatics.

Chin Med. 2025-8-5

[2]
Understanding mechanisms of -derived exosome-like nanoparticles against breast cancer through an integrated metabolomics and network pharmacology analysis.

Front Chem. 2025-6-6

[3]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[4]
Integrated bioinformatics and network pharmacology to identify and validate macrophage polarization related hub genes in the treatment of osteoarthritis with Astragalus membranaceus.

J Orthop Surg Res. 2025-5-30

[5]
Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic Urticaria Treatment: An Integrated Approach of Network Pharmacology, Bioinformatics Analysis, Molecular Docking, and Molecular Dynamics Simulations.

Curr Comput Aided Drug Des. 2025-7-16

[6]
Mechanism of Salvia miltiorrhiza in the treatment of periodontitis: integrative analyses via network pharmacology, molecular dynamics, and cellular assays.

BMC Complement Med Ther. 2025-7-28

[7]
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation.

Curr Issues Mol Biol. 2025-6-25

[8]
Integrated metabolomics and serum-feces pharmacochemistry-based network pharmacology to reveal the mechanisms of an herbal prescription against ulcerative colitis.

Comput Biol Med. 2024-8

[9]
Investigation of the effect and mechanism of Fei Re Pu Qing powder in treating acute lung injury (ALI) by modulating macrophage polarization via serum pharmacology and network pharmacology.

J Ethnopharmacol. 2025-7-24

[10]
Integrating metabolomics and network pharmacology analysis provides new insights into the lipid metabolism disorder of Abrus mollis.

J Ethnopharmacol. 2025-7-24

本文引用的文献

[1]
Dextromethorphan Inhibits Osteoblast Differentiation and Bone Regeneration of Rats With Subcritical-Sized Calvarial Defects.

Environ Toxicol. 2025-4

[2]
Deciphering the role of lipid metabolism and acetylation in osteosarcoma: A comprehensive molecular analysis.

Environ Toxicol. 2024-10

[3]
Inhibiting HMGCR represses stemness and metastasis of hepatocellular carcinoma via Hedgehog signaling.

Genes Dis. 2024-4-3

[4]
Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities.

Int J Biol Sci. 2024-3-17

[5]
Arenobufagin modulation of PCSK9-mediated cholesterol metabolism induces tumor-associated macrophages polarisation to inhibit hepatocellular carcinoma progression.

Phytomedicine. 2024-6

[6]
Reprogramming of Lipid Metabolism Mediates Crosstalk, Remodeling, and Intervention of Microenvironment Components in Breast Cancer.

Int J Biol Sci. 2024

[7]
Targeted metabolomics reveals the aberrant energy status in diabetic peripheral neuropathy and the neuroprotective mechanism of traditional Chinese medicine JinMaiTong.

J Pharm Anal. 2024-2

[8]
Modulating pancreatic cancer microenvironment: The efficacy of Huachansu in mouse models via TGF-β/Smad pathway.

J Ethnopharmacol. 2024-5-23

[9]
LncRNA RPARP-AS1 promotes the progression of osteosarcoma cells through regulating lipid metabolism.

BMC Cancer. 2024-2-2

[10]
Biomarkers prediction and immune landscape in ulcerative colitis: Findings based on bioinformatics and machine learning.

Comput Biol Med. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索