Hu Wanlong, Liu Zhengjie, Wei Yuming, Bian Qucheng, Lan Weiqi, Fan Chongzheng, Song Jiaoyang, Sun Qianqian, Zhang Xiaojie, Liu Yuqing, Gao Yan, Chen Yibao
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
Commun Biol. 2025 Aug 6;8(1):1166. doi: 10.1038/s42003-025-08595-7.
The global resurgence of multidrug-resistant Salmonella species, responsible for millions of annual infections, underscores the urgent need for alternative antimicrobial strategies, such as phage therapy. Microviridae phages offer a promising model for studying phage-host interactions with their unique structural and infection mechanisms. Here, we identify two Microviridae phages, PJNS001 and PJNS002, with different host receptor dependencies, and determine their cryo-EM structures at 2.68 Å and 2.59 Å resolution, respectively. These icosahedral capsids with T = 1 symmetry exhibit a unique vertex reinforcement mechanism, stabilizing the viral assembly. The specific pentameric adaptations, coupled with DNA binding protein engagements and thermodynamic constraints, collectively preclude the formation of hybrid virions. Structural analysis and in situ visualization reveal spike protein features and host-attachment intermediates, informing host specificity. Together, these findings advance our understanding of Microviridae infection mechanisms and provide a structural framework for rational phage design against antibiotic-resistant pathogens.
每年导致数百万感染病例的多重耐药沙门氏菌在全球范围内再度出现,这凸显了对替代抗菌策略(如噬菌体疗法)的迫切需求。微小病毒科噬菌体凭借其独特的结构和感染机制,为研究噬菌体与宿主的相互作用提供了一个有前景的模型。在此,我们鉴定出两种对宿主受体依赖性不同的微小病毒科噬菌体PJNS001和PJNS002,并分别以2.68 Å和2.59 Å的分辨率确定了它们的冷冻电镜结构。这些具有T = 1对称性的二十面体衣壳展现出一种独特的顶点强化机制,可稳定病毒组装。特定的五聚体适应性变化,连同DNA结合蛋白的参与和热力学限制,共同阻止了杂交病毒粒子的形成。结构分析和原位可视化揭示了刺突蛋白特征和宿主附着中间体,为宿主特异性提供了信息。这些发现共同推动了我们对微小病毒科感染机制的理解,并为针对抗生素耐药病原体的合理噬菌体设计提供了一个结构框架。