Suppr超能文献

基于随机学习的胸部X光诊断图像分类

Stochastic-based learning for image classification in chest X-ray diagnosis.

作者信息

Zeng Xinghui, Gong Shushu

机构信息

Information Department, People's Hospital of Yangjiang, Yangjiang City, Guangdong Province, China.

Department of Radiology, Haimen District Peoples Hospital, Nantong, Jiangsu Province, China.

出版信息

Digit Health. 2025 Aug 4;11:20552076251361745. doi: 10.1177/20552076251361745. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVES

The current research introduces a stochastic deep learning method with the aim of enhancing lung disease detection, particularly pneumonia, in chest X-ray images. The goal is to improve diagnostic precision and help facilitate more effective clinical practices.

METHODS

We deployed a better convolutional neural network architecture, thoroughly optimized with dropout regularization and aggressive data augmentation to support classification performance as well as model resilience. The training process utilized stochastic deep learning using stochastic gradient descent, with K-Fold cross-validation and early stopping used for exhaustive model optimization and against overfitting.

RESULTS

Experiment results invariably prove the efficacy and efficacy of the suggested method. Throughout the validation folds, the model recorded marked improvements in precision and loss measures. It is interesting to see that on fold 5, the suggested model registered a remarkable accuracy of 0.9940 and precision of 0.9960 in diagnosing pneumonia.

CONCLUSIONS

This deep learning strategy provides an effective tool for computerized, precise identification of lung diseases from chest X-rays. Its high accuracy has great promise for applications in real-world clinical practice, allowing for earlier and more consistent diagnoses, which could result in timely interventions and ultimately help reduce severe outcomes and rates of mortality in patients. Although extremely promising, additional validation on varied, large datasets and implementation within clinical decision support systems will be important for widespread use.

摘要

目的

当前研究引入一种随机深度学习方法,旨在提高胸部X光图像中肺部疾病的检测能力,尤其是肺炎的检测。目标是提高诊断精度,并有助于促进更有效的临床实践。

方法

我们部署了一种更好的卷积神经网络架构,通过随机失活正则化和积极的数据增强进行了全面优化,以支持分类性能以及模型弹性。训练过程采用随机梯度下降的随机深度学习,使用K折交叉验证和早期停止进行详尽的模型优化并防止过拟合。

结果

实验结果始终证明了所提方法的有效性。在整个验证折次中,该模型在精度和损失度量方面都有显著提升。有趣的是,在第5折次中,所提模型在诊断肺炎时的准确率达到了0.9940,精度达到了0.9960。

结论

这种深度学习策略为从胸部X光片中进行计算机化、精确的肺部疾病识别提供了一种有效工具。其高准确率在实际临床实践中的应用前景广阔,能够实现更早且更一致的诊断,这可能会带来及时的干预措施,并最终有助于降低患者的严重后果和死亡率。尽管前景极为广阔,但在不同的大型数据集上进行额外验证以及在临床决策支持系统中实施,对于其广泛应用而言将至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f5/12326093/affd10d9c03c/10.1177_20552076251361745-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验