Suppr超能文献

用于揭示注意力缺陷多动障碍中体素连接模式的大数据分析

Big Data Analytics for Uncovering Voxel Connectivity Patterns in Attention Deficit Hyperactivity Disorder.

作者信息

Caraka Rezzy Eko, Supardi Khairunnisa, Gio Prana Ugiana, Isnaniawardhani Vijaya, Chen Rung Ching, Djatmiko Bekti, Pardamean Bens

机构信息

Engineers Profession Program, Graduate School, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia.

Research Center for Data and Information Sciences, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia.

出版信息

J Multidiscip Healthc. 2025 Jul 31;18:4411-4430. doi: 10.2147/JMDH.S523137. eCollection 2025.

Abstract

INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a complex neurodevelopmental condition characterized by heterogeneous brain activity patterns. Identifying key brain regions associated with ADHD remains a challenge due to the high dimensionality and complexity of neuroimaging data. This study aims to apply advanced machine learning techniques to uncover critical features and improve classification performance in ADHD diagnosis.

METHODS

We analyzed 5937 brain voxels aggregated from neuroimaging records of patients diagnosed with ADHD. Feature selection was performed using Boruta, Random Forest in combination with DALEX explainability tools, and Neural Networks. Dimensionality reduction and clustering techniques including Principal Component Analysis (PCA), KMeans, and MCLUST were used to explore underlying voxel patterns. The performance of different activation functions-ReLU, Sigmoid, and Tanh-was evaluated within deep neural networks.

RESULTS

Several key brain regions, including the Fusiform Gyrus, Thalamus, and Superior Temporal Gyrus, were identified as significant predictors for ADHD. The integration of machine learning models demonstrated improved classification accuracy, with ReLU-based neural networks outperforming others in most evaluation metrics.

DISCUSSION

The study demonstrates the potential of a robust, integrated machine learning framework to analyze high-dimensional neuroimaging data and identify biologically relevant markers of ADHD. These findings contribute to the growing body of evidence supporting data-driven approaches in neuropsychiatric diagnosis and may inform future clinical decision-making and personalized interventions.

摘要

引言

注意力缺陷多动障碍(ADHD)是一种复杂的神经发育疾病,其特征是大脑活动模式具有异质性。由于神经影像数据的高维度和复杂性,识别与ADHD相关的关键脑区仍然是一项挑战。本研究旨在应用先进的机器学习技术来揭示关键特征并提高ADHD诊断的分类性能。

方法

我们分析了从被诊断患有ADHD的患者的神经影像记录中汇总的5937个脑体素。使用Boruta、结合DALEX可解释性工具的随机森林和神经网络进行特征选择。使用包括主成分分析(PCA)、KMeans和MCLUST在内的降维和聚类技术来探索潜在的体素模式。在深度神经网络中评估了不同激活函数(ReLU、Sigmoid和Tanh)的性能。

结果

几个关键脑区,包括梭状回、丘脑和颞上回,被确定为ADHD的重要预测指标。机器学习模型的整合显示出分类准确率的提高,基于ReLU的神经网络在大多数评估指标中表现优于其他模型。

讨论

该研究证明了一个强大的、集成的机器学习框架在分析高维神经影像数据和识别ADHD生物学相关标志物方面的潜力。这些发现为支持神经精神疾病诊断中数据驱动方法的越来越多的证据做出了贡献,并可能为未来的临床决策和个性化干预提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验