Suppr超能文献

使用基于基因的方法来确定复杂人类性状之间表型相关性背后的遗传基础和分子机制。

Identifying the genetic basis and molecular mechanisms underlying phenotypic correlation between complex human traits using a gene-based approach.

作者信息

Gu Jialiang, Fuller Chris, Carbonetto Peter, He Xin, Zheng Jiashun, Li Hao

出版信息

bioRxiv. 2025 Jul 27:2021.02.09.430368. doi: 10.1101/2021.02.09.430368.

Abstract

Phenotypic correlations between complex human traits have long been observed based on epidemiological studies. However, the genetic basis and underlying mechanisms are largely unknown. Here we developed a gene-based approach to measure genetic overlap between a pair of traits and to delineate the shared genes/pathways, through three steps: 1) translating SNP-phenotype association profile to gene-phenotype association profile by integrating GWAS with eQTL data using a newly developed algorithm called Sherlock-II; 2) measuring the genetic overlap between a pair of traits by a normalized distance and the associated p value between the two gene-phenotype association profiles; 3) delineating genes/pathways involved. Application of this approach to a set of GWAS data covering 59 human traits detected significant overlap between many known and unexpected pairs of traits; a significant fraction of them are not detectable by SNP based genetic similarity measures. Examples include Cancer and Alzheimer's Disease (AD), Rheumatoid Arthritis and Crohn's disease, and Longevity and Fasting glucose. Functional analysis revealed specific genes/pathways shared by these pairs. For example, Cancer and AD are co-associated with genes involved in hypoxia response and P53/apoptosis pathways, suggesting specific mechanisms underlying the inverse correlation between them. Our approach can detect yet unknown relationships between complex traits and generate mechanistic hypotheses and has the potential to improve diagnosis and treatment by transferring knowledge from one disease to another.

摘要

长期以来,基于流行病学研究观察到复杂人类性状之间的表型相关性。然而,其遗传基础和潜在机制在很大程度上尚不清楚。在此,我们开发了一种基于基因的方法,通过三个步骤来测量一对性状之间的遗传重叠并描绘共享基因/通路:1)使用一种名为Sherlock-II的新开发算法,将全基因组关联研究(GWAS)与表达数量性状基因座(eQTL)数据整合,将单核苷酸多态性(SNP)-表型关联谱转化为基因-表型关联谱;2)通过归一化距离和两个基因-表型关联谱之间的相关P值来测量一对性状之间的遗传重叠;3)描绘涉及的基因/通路。将该方法应用于一组涵盖59种人类性状的GWAS数据,发现许多已知和意外的性状对之间存在显著重叠;其中很大一部分无法通过基于SNP的遗传相似性测量方法检测到。例如癌症与阿尔茨海默病(AD)、类风湿性关节炎与克罗恩病、以及长寿与空腹血糖。功能分析揭示了这些性状对共享的特定基因/通路。例如,癌症与AD共同与参与缺氧反应和P53/凋亡通路的基因相关,这表明它们之间负相关的特定机制。我们的方法可以检测复杂性状之间尚未知晓的关系并生成机制假设,并且有可能通过将一种疾病的知识转移到另一种疾病来改善诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fe9/12330493/1d077518a307/nihpp-2021.02.09.430368v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验