文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于识别银屑病关节炎的机器学习方法的诊断准确性:一项荟萃分析。

Diagnostic accuracy of machine learning approaches to identify psoriatic arthritis: a meta-analysis.

作者信息

Chen Zhigang, Wu Zhenheng, Tan Haifen, Yu Fuqian, Wang Dongmei, Lin Pengfei

机构信息

Department of Gastrointestinal Surgery, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou 213000, Jiangsu, China.

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China.

出版信息

Clin Exp Med. 2025 Aug 9;25(1):284. doi: 10.1007/s10238-025-01734-8.


DOI:10.1007/s10238-025-01734-8
PMID:40782250
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12335396/
Abstract

While machine learning (ML) approaches are commonly utilized in medical diagnostics, the accuracy of these methods in identifying psoriatic arthritis (PsA) remains uncertain. To evaluate the accuracy of ML approaches in the medical diagnosis of PsA. As a result, we thoroughly searched PubMed, Web of Science (WoS), Embase, Scopus, Cochrane Library, Wanfang, and the Chinese National Knowledge Infrastructure (CNKI) between their inception and October 1, 2024. The overall test performance of ML approaches was evaluated using the following metrics: pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), the area under the curve (AUC), and Fagan plot analysis. Additionally, we assessed the publication bias using the asymmetry test of the Deeks funnel plot. Six studies were included. The combined diagnostic data showed sensitivity of 0.72 (95% CI 0.60-0.81), specificity of 0.81 (95% CI 0.61-0.92), PLR of 4.00 (95% CI 3.06-5.23), NLR of 0.41 (95% CI 0.34-0.49), DOR of 11.06 (95% CI 6.42-19.06), and AUC of 0.81 (95% CI 0.78-0.84). The Fagan plot showed that the positive probability is 48% and the negative probability is 8%. Meta-regression identified country and sample size (all P < 0.05) as key sources of heterogeneity. The Deek funnel plot suggested that publication bias has no statistical significance (P = 0.99). The study suggests a promising accuracy of ML approaches in diagnosing PsA.

摘要

虽然机器学习(ML)方法在医学诊断中普遍应用,但其在识别银屑病关节炎(PsA)方面的准确性仍不确定。为评估ML方法在PsA医学诊断中的准确性。为此,我们全面检索了PubMed、科学网(WoS)、Embase、Scopus、Cochrane图书馆、万方和中国知网(CNKI)自建库至2024年10月1日期间的文献。使用以下指标评估ML方法的总体测试性能:合并敏感度、合并特异度、阳性似然比(PLR)、阴性似然比(NLR)、诊断比值比(DOR)、曲线下面积(AUC)以及Fagan图分析。此外,我们使用Deeks漏斗图的不对称性检验评估发表偏倚。纳入了六项研究。合并诊断数据显示敏感度为0.72(95%CI 0.60 - 0.81),特异度为0.81(95%CI 0.61 - 0.92),PLR为4.00(95%CI 3.06 - 5.23),NLR为0.41(95%CI 0.34 - 0.49),DOR为11.06(95%CI 6.42 - 19.06),AUC为0.81(95%CI 0.78 - 0.84)。Fagan图显示阳性概率为48%,阴性概率为8%。Meta回归确定国家和样本量(所有P < 0.05)为异质性的关键来源。Deek漏斗图表明发表偏倚无统计学意义(P = 0.99)。该研究表明ML方法在诊断PsA方面具有可观的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/5a8eafee9c65/10238_2025_1734_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/9a1ce858b024/10238_2025_1734_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/265464d0a85d/10238_2025_1734_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/2b20b1962611/10238_2025_1734_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/1bc3e9c25ae2/10238_2025_1734_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/5a8eafee9c65/10238_2025_1734_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/9a1ce858b024/10238_2025_1734_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/265464d0a85d/10238_2025_1734_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/2b20b1962611/10238_2025_1734_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/1bc3e9c25ae2/10238_2025_1734_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c905/12335396/5a8eafee9c65/10238_2025_1734_Fig5_HTML.jpg

相似文献

[1]
Diagnostic accuracy of machine learning approaches to identify psoriatic arthritis: a meta-analysis.

Clin Exp Med. 2025-8-9

[2]
Serum and urine nucleic acid screening tests for BK polyomavirus-associated nephropathy in kidney and kidney-pancreas transplant recipients.

Cochrane Database Syst Rev. 2024-11-28

[3]
Blood biomarkers for the non-invasive diagnosis of endometriosis.

Cochrane Database Syst Rev. 2016-5-1

[4]
Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2014-6-10

[5]
Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis.

Int J Med Inform. 2025-4

[6]
A systematic review and meta-analysis of the accuracy of diffusion-weighted MRI in the detection of malignant pulmonary nodules and masses.

Acad Radiol. 2014-1

[7]
PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer.

Cochrane Database Syst Rev. 2014-11-13

[8]
Three-dimensional saline infusion sonography compared to two-dimensional saline infusion sonography for the diagnosis of focal intracavitary lesions.

Cochrane Database Syst Rev. 2017-5-5

[9]
The diagnostic accuracy of a real-time optoelectronic device in cervical cancer screening: A PRISMA-compliant systematic review and meta-analysis.

Medicine (Baltimore). 2018-7

[10]
Platelet count, spleen length, and platelet count-to-spleen length ratio for the diagnosis of oesophageal varices in people with chronic liver disease or portal vein thrombosis.

Cochrane Database Syst Rev. 2017-4-26

本文引用的文献

[1]
MRI-Based Models Using Habitat Imaging for Predicting Distinct Vascular Patterns in Hepatocellular Carcinoma.

Acad Radiol. 2025-7-24

[2]
Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma.

Sci Rep. 2025-3-20

[3]
Assessing Teledentistry versus In-Person Examinations to Detect Dental Caries: A Systematic Review and Meta-analysis.

JDR Clin Trans Res. 2025-3-12

[4]
Diagnostic Performance of Artificial Intelligence Based on Biparametric MRI for Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis.

Acad Radiol. 2025-3-8

[5]
Advancing accuracy in breath testing for lung cancer: strategies for improving diagnostic precision in imbalanced data.

Respir Res. 2024-1-16

[6]
Efficacy and safety of the integration of traditional Chinese medicine and western medicine in the treatment of diabetes-associated cognitive decline: a systematic review and meta-analysis.

Front Pharmacol. 2023-11-22

[7]
Exploring the efficacy of artificial neural networks in predicting lung cancer recurrence: a retrospective study based on patient records.

Transl Lung Cancer Res. 2023-10-31

[8]
Prevalence and Clinical Predictors of Psoriatic Arthritis in Saudi Patients With Psoriasis: A Single-Center Retrospective Cohort Study.

Cureus. 2023-10-7

[9]
Evaluation of a machine learning tool for the early identification of patients with undiagnosed psoriatic arthritis - A retrospective population-based study.

J Transl Autoimmun. 2023-8-2

[10]
Label-free atherosclerosis diagnosis through a blood drop of apolipoprotein E knockout mouse model using surface-enhanced Raman spectroscopy validated by machine learning algorithm.

Bioeng Transl Med. 2023-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索