Chen Zhigang, Wu Zhenheng, Tan Haifen, Yu Fuqian, Wang Dongmei, Lin Pengfei
Department of Gastrointestinal Surgery, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No.68 Gehu Road, Wujin District, Changzhou 213000, Jiangsu, China.
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China.
Clin Exp Med. 2025 Aug 9;25(1):284. doi: 10.1007/s10238-025-01734-8.
While machine learning (ML) approaches are commonly utilized in medical diagnostics, the accuracy of these methods in identifying psoriatic arthritis (PsA) remains uncertain. To evaluate the accuracy of ML approaches in the medical diagnosis of PsA. As a result, we thoroughly searched PubMed, Web of Science (WoS), Embase, Scopus, Cochrane Library, Wanfang, and the Chinese National Knowledge Infrastructure (CNKI) between their inception and October 1, 2024. The overall test performance of ML approaches was evaluated using the following metrics: pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), the area under the curve (AUC), and Fagan plot analysis. Additionally, we assessed the publication bias using the asymmetry test of the Deeks funnel plot. Six studies were included. The combined diagnostic data showed sensitivity of 0.72 (95% CI 0.60-0.81), specificity of 0.81 (95% CI 0.61-0.92), PLR of 4.00 (95% CI 3.06-5.23), NLR of 0.41 (95% CI 0.34-0.49), DOR of 11.06 (95% CI 6.42-19.06), and AUC of 0.81 (95% CI 0.78-0.84). The Fagan plot showed that the positive probability is 48% and the negative probability is 8%. Meta-regression identified country and sample size (all P < 0.05) as key sources of heterogeneity. The Deek funnel plot suggested that publication bias has no statistical significance (P = 0.99). The study suggests a promising accuracy of ML approaches in diagnosing PsA.
虽然机器学习(ML)方法在医学诊断中普遍应用,但其在识别银屑病关节炎(PsA)方面的准确性仍不确定。为评估ML方法在PsA医学诊断中的准确性。为此,我们全面检索了PubMed、科学网(WoS)、Embase、Scopus、Cochrane图书馆、万方和中国知网(CNKI)自建库至2024年10月1日期间的文献。使用以下指标评估ML方法的总体测试性能:合并敏感度、合并特异度、阳性似然比(PLR)、阴性似然比(NLR)、诊断比值比(DOR)、曲线下面积(AUC)以及Fagan图分析。此外,我们使用Deeks漏斗图的不对称性检验评估发表偏倚。纳入了六项研究。合并诊断数据显示敏感度为0.72(95%CI 0.60 - 0.81),特异度为0.81(95%CI 0.61 - 0.92),PLR为4.00(95%CI 3.06 - 5.23),NLR为0.41(95%CI 0.34 - 0.49),DOR为11.06(95%CI 6.42 - 19.06),AUC为0.81(95%CI 0.78 - 0.84)。Fagan图显示阳性概率为48%,阴性概率为8%。Meta回归确定国家和样本量(所有P < 0.05)为异质性的关键来源。Deek漏斗图表明发表偏倚无统计学意义(P = 0.99)。该研究表明ML方法在诊断PsA方面具有可观的准确性。
Cochrane Database Syst Rev. 2024-11-28
Cochrane Database Syst Rev. 2016-5-1
Cochrane Database Syst Rev. 2014-11-13