Li Pengfei, Yang Fan, Sun Xin, He Xuhao, Wan Huan
Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Jiangxi Provincial Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Jiangxi Provincial Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
Bioresour Technol. 2025 Dec;437:133129. doi: 10.1016/j.biortech.2025.133129. Epub 2025 Aug 7.
To investigate hydrodynamic effect on microalgal physiological character, the self-designed photobioreactor was used to cultivate microalgae for evaluating bioenergy feasibility. The oleaginous microalgae were chosen as objective, analyzing growth, photosynthesis activity, and lipid accumulation under varying hydrodynamic disturbance. The microalgal biomass accumulation display statistically significant variation across different flow rates (p < 0.05). The best flow rate of 0.1 L/s for promoting microalgae biomass under flow velocity of 0.178 m/s, yielding maximum biomass production of 660.54 mg/L and lipid productivity of 30.02 mg·L·d. Below this threshold velocity of 0.178 m/s, biomass production exhibited a positive correlation with increasing flow rate. The chlorophyll a concentration peaked at 31.90 mg/L, indicating enhanced photosynthetic activity, consistent with maximum quantum yield of Y(II) and electron transport rate of ETR, confirming superior algal growth performance. When cultivated in domestic wastewater for lipid production, the oleaginous microalgae exhibited efficient nutrient utilization, achieving removal efficiencies exceeding 99 % (total nitrogen), 87 % (total phosphorus), and 41 % (total organic carbon). The lipid profiling revealed 204.07 mg/L triacylglycerol production in photobioreactor-cultured strains, representing an 84 % increase over Desmodesmus sp., corroborated by overexpressed enzymes of acetyl-CoA carboxylase and diacylglycerol acyltransferase. The fatty acids performed elevated saturation and monounsaturation levels, demonstrating optimal biodiesel feedstock characteristics.
为研究流体动力学对微藻生理特性的影响,使用自行设计的光生物反应器培养微藻,以评估生物能源的可行性。选择含油微藻作为研究对象,分析不同流体动力学干扰下的生长、光合作用活性和脂质积累情况。微藻生物量积累在不同流速下呈现出统计学上的显著差异(p < 0.05)。在流速为0.178 m/s时,促进微藻生物量的最佳流速为0.1 L/s,最大生物量产量为660.54 mg/L,脂质生产率为30.02 mg·L·d。低于0.178 m/s的阈值流速时,生物量产量与流速增加呈正相关。叶绿素a浓度峰值为31.90 mg/L,表明光合作用活性增强,这与最大光量子产量Y(II)和电子传递速率ETR一致,证实了微藻的优越生长性能。当在生活污水中培养以生产脂质时,含油微藻表现出高效的养分利用能力,总氮去除效率超过99%,总磷去除效率超过87%,总有机碳去除效率超过41%。脂质分析显示,光生物反应器培养的菌株中三酰甘油产量为204.07 mg/L,比斜生栅藻增加了84%,乙酰辅酶A羧化酶和二酰甘油酰基转移酶的过表达证实了这一点。脂肪酸的饱和水平和单不饱和水平升高,显示出最佳的生物柴油原料特性。