Suppr超能文献

一种面向服务的微服务框架,用于工业物联网智能应用中基于差分隐私的保护。

A service-oriented microservice framework for differential privacy-based protection in industrial IoT smart applications.

作者信息

Murala Dileep Kumar, Prasada Rao K Vara, Vuyyuru Veera Ankalu, Assefa Beakal Gizachew

机构信息

Department of Computer Science and Engineering, Faculty of Science and Technology, ICFAI Foundation for Higher Education, Hyderabad, Telangana, 50120, India.

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., 522502, India.

出版信息

Sci Rep. 2025 Aug 9;15(1):29230. doi: 10.1038/s41598-025-15077-7.

Abstract

The rapid advancement of key technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), and edge-cloud computing has significantly accelerated the transformation toward smart industries across various domains, including finance, manufacturing, and healthcare. Edge and cloud computing offer low-cost, scalable, and on-demand computational resources, enabling service providers to deliver intelligent data analytics and real-time insights to end-users. However, despite their potential, the practical adoption of these technologies faces critical challenges, particularly concerning data privacy and security. AI models, especially in distributed environments, may inadvertently retain and leak sensitive training data, exposing users to privacy risks in the event of malicious attacks. To address these challenges, this study proposes a privacy-preserving, service-oriented microservice architecture tailored for intelligent Industrial IoT (IIoT) applications. The architecture integrates Differential Privacy (DP) mechanisms into the machine learning pipeline to safeguard sensitive information. It supports both centralised and distributed deployments, promoting flexible, scalable, and secure analytics. We developed and evaluated differentially private models, including Radial Basis Function Networks (RBFNs), across a range of privacy budgets (ɛ), using both real-world and synthetic IoT datasets. Experimental evaluations using RBFNs demonstrate that the framework maintains high predictive accuracy (up to 96.72%) with acceptable privacy guarantees for budgets [Formula: see text]. Furthermore, the microservice-based deployment achieves an average latency reduction of 28.4% compared to monolithic baselines. These results confirm the effectiveness and practicality of the proposed architecture in delivering privacy-preserving, efficient, and scalable intelligence for IIoT environments. Additionally, the microservice-based design enhanced computational efficiency and reduced latency through dynamic service orchestration. This research demonstrates the feasibility of deploying robust, privacy-conscious AI services in IIoT environments, paving the way for secure, intelligent, and scalable industrial systems.

摘要

人工智能(AI)、物联网(IoT)和边缘云计算等关键技术的迅速发展显著加速了包括金融、制造和医疗保健在内的各个领域向智能产业的转型。边缘和云计算提供低成本、可扩展且按需使用的计算资源,使服务提供商能够为终端用户提供智能数据分析和实时洞察。然而,尽管这些技术具有潜力,但在实际应用中仍面临关键挑战,尤其是在数据隐私和安全方面。人工智能模型,特别是在分布式环境中,可能会无意中保留并泄露敏感的训练数据,在遭受恶意攻击时使用户面临隐私风险。为应对这些挑战,本研究提出了一种专为智能工业物联网(IIoT)应用量身定制的、注重隐私保护的面向服务的微服务架构。该架构将差分隐私(DP)机制集成到机器学习管道中以保护敏感信息。它支持集中式和分布式部署,促进灵活、可扩展且安全的分析。我们使用真实世界和合成物联网数据集,在一系列隐私预算(ɛ)下开发并评估了差分隐私模型,包括径向基函数网络(RBFN)。使用RBFN进行的实验评估表明,该框架在预算[公式:见原文]下具有可接受的隐私保证,同时保持了较高的预测准确率(高达96.72%)。此外,与整体式基线相比,基于微服务的部署平均延迟降低了28.4%。这些结果证实了所提出架构在为IIoT环境提供隐私保护、高效且可扩展的智能方面的有效性和实用性。此外,基于微服务的设计通过动态服务编排提高了计算效率并减少了延迟。本研究证明了在IIoT环境中部署强大的、注重隐私的人工智能服务的可行性,为安全、智能且可扩展的工业系统铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e9/12335493/d467763372bc/41598_2025_15077_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验