Shen Yong, Li Bohan, Dong Lei, Tang Wei, Ren Jiwu, Chen Feng, Zheng Wenjuan, Yu Ying, Gao Lu, Wei Wensheng
Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, P.R. China.
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China.
Nat Commun. 2025 Aug 10;16(1):7376. doi: 10.1038/s41467-025-62607-y.
Circular RNA (circRNA) has gained significant attention in RNA therapeutics due to its enhanced stability and protein-coding potential. In this study, we present two in vitro RNA circularization techniques, namely Permuted Intron-Exon through Trans-splicing (PIET) and Complete self-splicing Intron for RNA Circularization (CIRC). PIET leverages the second step of group I intron splicing, offering an alternative circularization strategy. CIRC utilizes the natural, intact forms of group I and group II introns, eliminating the need for intron engineering. Compared to Permuted Intron-Exon (PIE), CIRC exhibits enhanced RNA circularization efficiency and speed under mild conditions. Using CIRC, we successfully circularize large RNA constructs encoding full-length dystrophin, a protein whose deficiency is linked to Duchenne muscular dystrophy (DMD), thus overcoming size limitations typically associated with circRNA platforms. Notably, CIRC enables the production of scarless circRNA and circRNA with minimal immunogenicity. Additionally, CIRC supports streamlined circRNA purification using ribonuclease R (RNase R) or oligo(dT)-based methods. These advancements significantly expand the potential of the circRNA platform for both research and therapeutic applications.
环状RNA(circRNA)因其增强的稳定性和蛋白质编码潜力而在RNA治疗领域受到了广泛关注。在本研究中,我们展示了两种体外RNA环化技术,即通过反式剪接的置换内含子-外显子(PIET)和用于RNA环化的完全自我剪接内含子(CIRC)。PIET利用I组内含子剪接的第二步,提供了一种替代的环化策略。CIRC利用I组和II组内含子的天然完整形式,无需进行内含子工程改造。与置换内含子-外显子(PIE)相比,CIRC在温和条件下表现出更高的RNA环化效率和速度。使用CIRC,我们成功地将编码全长肌营养不良蛋白的大型RNA构建体环化,该蛋白的缺乏与杜氏肌营养不良症(DMD)相关,从而克服了通常与circRNA平台相关的大小限制。值得注意的是,CIRC能够产生无疤痕的circRNA和免疫原性极低的circRNA。此外,CIRC支持使用核糖核酸酶R(RNase R)或基于寡聚(dT)的方法进行简化的circRNA纯化。这些进展显著扩展了circRNA平台在研究和治疗应用方面的潜力。