Chang Zao-Shang, Wang Le, Zhou Ju-Xiang, Li Mei-Xiu-Li, Yang Meng-Yun, Luo Bin, Liu Jia-Jun, Sun Xiao-Ye, Xia Jing-Bo
Department of Physiology, Pu ai Medical School, Shaoyang University, Shaoyang, Hunan, China.
Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong, China.
J Cell Mol Med. 2025 Aug;29(15):e70775. doi: 10.1111/jcmm.70775.
Doxorubicin (DOX) is an effective chemotherapy drug, but its use is limited by cardiotoxicity, known as DOX-induced cardiomyopathy. The transcription factor FoxO3, which regulates autophagy and oxidative stress, has unclear mechanisms in this condition. We found that DOX-induced cardiomyopathy involved cardiac atrophy, cardiac dysfunction, fibrosis and mitochondrial damage. DOX reduced H9c2 cardiomyocyte viability and glutathione levels (GSH), increased reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) and inhibited superoxide dismutase 2 (SOD2) and catalase (CAT) expression. DOX also suppressed FoxO3 activation and increased the autophagy protein LC3 II/I ratio. Overexpressing FoxO3 enhanced LC3B, Beclin 1 and autophagic flux, while reducing p62 and suppressing mTOR activation in heart. Brefeldin A1 (BafA1), an autophagy inhibitor and rapamycin (Rapa), an autophagy activator, were administered to H9c2 cardiomyocytes to elucidate the regulatory mechanism of FoxO3. Mechanically, our data revealed that FoxO3 overexpression enhanced autophagy and suppressed ROS production and mTOR activation in both in vitro and in vivo models of DOX exposure. Collectively, targeting FoxO3 to enhance protective autophagy may offer a therapeutic strategy against DOX-induced cardiomyopathy.
阿霉素(DOX)是一种有效的化疗药物,但其应用受到心脏毒性的限制,即DOX诱导的心肌病。转录因子FoxO3可调节自噬和氧化应激,在这种情况下其机制尚不清楚。我们发现DOX诱导的心肌病涉及心脏萎缩、心脏功能障碍、纤维化和线粒体损伤。DOX降低了H9c2心肌细胞的活力和谷胱甘肽水平(GSH),增加了活性氧(ROS)、丙二醛(MDA)和乳酸脱氢酶(LDH),并抑制了超氧化物歧化酶2(SOD2)和过氧化氢酶(CAT)的表达。DOX还抑制了FoxO3的激活,并增加了自噬蛋白LC3 II/I的比率。过表达FoxO3可增强LC3B、Beclin 1和自噬通量,同时减少p62并抑制心脏中的mTOR激活。将自噬抑制剂布雷菲德菌素A1(BafA1)和自噬激活剂雷帕霉素(Rapa)应用于H9c2心肌细胞,以阐明FoxO3的调节机制。从机制上讲,我们的数据表明,在DOX暴露的体外和体内模型中,FoxO3过表达均可增强自噬并抑制ROS产生和mTOR激活。总的来说,靶向FoxO3以增强保护性自噬可能为DOX诱导的心肌病提供一种治疗策略。