Ray Akshay K, Yadav Sweta, Ramesh Mamindla, Barman Sayani, Deepa Melepurath, Niranjan Manish K, Prakash Jai
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
Dalton Trans. 2025 Aug 26;54(34):12890-12901. doi: 10.1039/d5dt01399b.
Semiconducting Sn-containing chalcogenides are promising for their photovoltaic properties. Herein, we report the syntheses of two barium tin chalcogenides, BaSn ( = S and Se), by high-temperature reactions of elements. A single-crystal X-ray diffraction study shows that the BaSnSe structure crystallizes in the monoclinic system (space group: 2/) with four formula units ( = 4). The refined lattice constants of the BaSnSe structure are = 11.4599(3) Å, = 6.9268(2) Å, = 19.6066(6) Å, and = 101.197(1)°. The BaSnSe structure is pseudo-zero-dimensional, similar to that of the BaSnS structure. However, in contrast to the sulfide counterpart, the BaSnSe structure features one split barium site (Ba1 and Ba2) arising from positional disorder. All atoms of the BaSn structures occupy the general positions. The main building blocks of the BaSn structures are the isolated anionic [Sn] motifs, which are separated and charge-balanced by the filling of Ba cations. Optical bandgap studies of polycrystalline BaSn samples confirm their semiconducting nature with the direct bandgap values of 2.3(1) eV ( = S) and 1.9(1) eV ( = Se). DFT studies also predict the semiconducting nature of the title phases, and the theoretical band gaps are in good agreement with the optical absorption studies. Photovoltaic characterization of the polycrystalline BaSnS sample reveals a 23.7% increase in power conversion efficiency, attributed to a reduced electron-hole recombination rate. Moreover, the theoretical electronic structures of the title chalcogenides are presented along with the COHPs results, highlighting the relative strengths of chemical bonds and charge transfer between the metals (Ba and Sn) and chalcogen (S/Se) atoms.
含锡半导体硫族化合物因其光伏特性而颇具前景。在此,我们报告了通过元素的高温反应合成两种钡锡硫族化合物BaSn ( = S和Se)。单晶X射线衍射研究表明,BaSnSe结构在单斜晶系(空间群:2/)中结晶,含有四个化学式单元( = 4)。BaSnSe结构的精修晶格常数为 = 11.4599(3) Å, = 6.9268(2) Å, = 19.6066(6) Å,以及 = 101.197(1)°。BaSnSe结构是准零维的,与BaSnS结构类似。然而,与硫化物对应物不同的是,BaSnSe结构具有一个由位置无序导致的分裂钡位点(Ba1和Ba2)。BaSn结构的所有原子占据一般位置。BaSn结构的主要构建单元是孤立的阴离子[Sn]基序,它们通过填充Ba阳离子而分离并实现电荷平衡。多晶BaSn样品的光学带隙研究证实了它们的半导体性质,其直接带隙值分别为2.3(1) eV( = S)和1.9(1) eV( = Se)。密度泛函理论(DFT)研究也预测了标题相的半导体性质,并且理论带隙与光吸收研究结果吻合良好。多晶BaSnS样品的光伏特性表明,由于电子 - 空穴复合率降低,功率转换效率提高了23.7%。此外,还给出了标题硫族化合物的理论电子结构以及晶体轨道哈密顿布居(COHPs)结果,突出了金属(Ba和Sn)与硫族(S/Se)原子之间化学键的相对强度和电荷转移情况。