文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

极低频电磁场促进脊髓神经干细胞的增殖和功能分化。

Extremely low-frequency electromagnetic fields facilitate proliferation and functional differentiation in spinal neural stem cells.

作者信息

Tang Wenxu, He Dan, Li Xiaofei, Feng Yi, Xu Yue, Hu Jiawei, Xu Wei, Xue Lei

机构信息

Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China.

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.

出版信息

Sci Rep. 2025 Aug 11;15(1):29291. doi: 10.1038/s41598-025-14738-x.


DOI:10.1038/s41598-025-14738-x
PMID:40789910
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12339996/
Abstract

Traumatic spinal cord injury (SCI), typically resulting from direct mechanical damage to the spine, often leads to disruption of neural signaling and axonal conduction, severely impairing nervous system function. In rodent models of SCI, neural stem cell (NSC) transplantation has demonstrated significant potential in restoring motor function and enhancing neural repair. Additionally, extremely low-frequency electromagnetic fields (ELF-EMFs) have demonstrated efficacy in promoting nerve regeneration and activating spinal circuits. However, studies exploring how ELF-EMFs influence NSC activation remain limited. In this study, using spinal cord-derived NSCs from adult mice, we report that ELF-EMFs enhance cell proliferation and self-renewal by upregulating Sox2 expression. Furthermore, we addressed the underlying mechanisms and found that ELF-EMFs activate T-type calcium channels and enhance calcium currents. The resulting increase in intercellular calcium concentration upregulates the expression of NeuroG1 and NeuroD1, promoting neuronal differentiation of NSCs and enhancing neurite outgrowth. Our findings provide new insights into the ELF-EMF-mediated activation of NSCs and highlight their potential for integration into combination therapies and SCI repair.

摘要

创伤性脊髓损伤(SCI)通常由脊柱直接机械损伤引起,常导致神经信号传导和轴突传导中断,严重损害神经系统功能。在SCI的啮齿动物模型中,神经干细胞(NSC)移植已显示出在恢复运动功能和促进神经修复方面的巨大潜力。此外,极低频电磁场(ELF-EMF)已证明在促进神经再生和激活脊髓回路方面具有功效。然而,探索ELF-EMF如何影响NSC激活的研究仍然有限。在本研究中,我们使用成年小鼠脊髓来源的NSC,报告ELF-EMF通过上调Sox2表达来增强细胞增殖和自我更新。此外,我们探讨了其潜在机制,发现ELF-EMF激活T型钙通道并增强钙电流。细胞内钙浓度的增加上调了NeuroG1和NeuroD1的表达,促进了NSC的神经元分化并增强了神经突生长。我们的研究结果为ELF-EMF介导的NSC激活提供了新的见解,并突出了它们整合到联合治疗和SCI修复中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/ff28208a2f2e/41598_2025_14738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/6aa289ef5868/41598_2025_14738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/1652865a7d15/41598_2025_14738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/f46389b571df/41598_2025_14738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/1a3fc133e05d/41598_2025_14738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/ff28208a2f2e/41598_2025_14738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/6aa289ef5868/41598_2025_14738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/1652865a7d15/41598_2025_14738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/f46389b571df/41598_2025_14738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/1a3fc133e05d/41598_2025_14738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e697/12339996/ff28208a2f2e/41598_2025_14738_Fig5_HTML.jpg

相似文献

[1]
Extremely low-frequency electromagnetic fields facilitate proliferation and functional differentiation in spinal neural stem cells.

Sci Rep. 2025-8-11

[2]
Black phosphorus nanosheets promote neuronal differentiation of neural stem cells through adhesion and pinocytosis for spinal cord injury repair.

Acta Biomater. 2025-8

[3]
Improving neuronal recovery in spinal cord injury with NEP1-40-modified neural stem cells through RhoA/ROCK signaling pathway modulation.

Biochim Biophys Acta Mol Basis Dis. 2025-10

[4]
Combination of induced pluripotent stem cell-derived motor neuron progenitor cells with irradiated brain-derived neurotrophic factor over-expressing engineered mesenchymal stem cells enhanced restoration of axonal regeneration in a chronic spinal cord injury rat model.

Stem Cell Res Ther. 2024-6-18

[5]
Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis.

Acta Biomater. 2024-7-15

[6]
Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1.

PLoS One. 2016-3-7

[7]
The roles of neural stem cells in myelin regeneration and repair therapy after spinal cord injury.

Stem Cell Res Ther. 2024-7-8

[8]
Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health.

Electromagn Biol Med. 2025

[9]
Transcription Factor EB Overexpression through Glial Fibrillary Acidic Protein Promoter Disrupts Neuronal Lamination by Dysregulating Neurogenesis during Embryonic Development.

Dev Neurosci. 2025

[10]
Hypoxic Neural Stem Cells Enhance Spinal Cord Repair Through HIF-1a/RAB17-Driven Extracellular Vesicle Release.

J Extracell Vesicles. 2025-7

本文引用的文献

[1]
Thy1-YFP: an effective tool for single cell tracing from neuronal progenitors to mature functionally active neurons.

Cell Death Discov. 2025-1-22

[2]
L-Type Calcium Channel Modulates Low-Intensity Pulsed Ultrasound-Induced Excitation in Cultured Hippocampal Neurons.

Neurosci Bull. 2024-7

[3]
Extremely low-frequency electromagnetic fields facilitate both osteoblast and osteoclast activity through Wnt/β-catenin signaling in the zebrafish scale.

Front Cell Dev Biol. 2024-2-7

[4]
Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances.

Brain. 2024-3-1

[5]
System-level biological effects of extremely low-frequency electromagnetic fields: an experimental review.

Front Neurosci. 2023-10-6

[6]
Recent advances in endogenous neural stem/progenitor cell manipulation for spinal cord injury repair.

Theranostics. 2023

[7]
Regulation of axonal regeneration after mammalian spinal cord injury.

Nat Rev Mol Cell Biol. 2023-6

[8]
Neurological effects of static and extremely-low frequency electromagnetic fields.

Electromagn Biol Med. 2022-4-3

[9]
Isolate and Culture Neural Stem Cells from the Mouse Adult Spinal Cord.

Methods Mol Biol. 2022

[10]
Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca/Calcineurin Pathway.

ACS Chem Neurosci. 2021-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索