Ruiz-Ruano Francisco J, Schlebusch Stephen A, Vontzou Niki, Moreno Hugo, Biegler Matthew T, Kutschera Verena E, Ekman Diana, Borges Inês, Pei Yifan, Rossini Roberto, Albrecht Tomas, Boman Jesper, Borodin Pavel, Burri Reto, Cain Kristal E, Forstmeier Wolfgang, Frankl-Vilches Carolina, Gahr Manfred, Griffith Simon C, Hill Amy M, Irestedt Martin, Joseph Leo, Jønsson Knud A, Kawakami Takeshi, Kempenaers Bart, Malinovskaya Lyubov, Mueller Jakob C, de Oliveira Edivaldo H C, Palacios-Gimenez Octavio M, Palinauskas Vaidas, Qvarnström Anna, Reifova Radka, Ridl Jakub, Segami J Carolina, Tan David J X, Torgasheva Anna, Whibley Annabel, Suh Alexander
Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Germany.
School of Biological Sciences, University of East Anglia, UK.
bioRxiv. 2025 Jul 18:2025.07.16.664580. doi: 10.1101/2025.07.16.664580.
Bird genomes are among the most stable in terms of synteny and gene content across vertebrates. However, germline-restricted chromosomes (GRCs) represent a striking exception where programmed DNA elimination confines large-scale genomic changes to the germline. GRCs are known to occur in songbirds (oscines), but have been studied only in a few species of Passerides such as the zebra finch, the key model for passerine genomics. Their presence and evolutionary dynamics in most major passerine lineages remain largely unexplored, with suboscines entirely unexamined by cytogenetic or genomic methods. Here, we present the most comprehensive comparative analysis of GRCs to date, spanning 44 million years of passerine evolution. By generating the first germline reference genomes of an oscine and a suboscine, 22 novel germline draft genomes spanning nearly all major passerine lineages and a germline draft genome of a parrot outgroup, we show that the GRC is likely present in 6,700 passerine species. Our results reveal that the GRC evolves rapidly and distinctly from the standard A chromosomes (autosomes and sex chromosomes), yet retains functionally important, selectively maintained genes. We observed gene and repeat turnover occuring orders of magnitude faster than on the A chromosomes. Some GRC genes, such as and , are widespread from an ancient duplication. In contrast, other GRC genes, like and , have been independently duplicated onto the GRC multiple times, suggesting adaptive constraints. The discovery of on the zebra finch GRC, initially copied from chromosome 30 and subsequently lost from it, indicates functional replacement, where the GRC permits gene loss from the standard genome. As the GRC harbors the only copy in most of the ~4000 Passerides species, GRC loss would compromise essential germline functions. Our findings establish the GRC as a genomic innovator driving rapid germline evolution. This fact highlights its evolutionary significance for passerine diversification and suggests that programmed DNA elimination may be an overlooked yet phylogenetically widespread mechanism in many understudied animal lineages.
就脊椎动物的染色体同线性和基因含量而言,鸟类基因组是最稳定的基因组之一。然而,种系限制染色体(GRCs)却是一个显著的例外,在这种情况下,程序性DNA消除将大规模基因组变化限制在种系中。已知GRCs存在于鸣禽(雀形目)中,但仅在少数雀形目物种(如斑胸草雀,雀形目基因组学的关键模型)中进行过研究。在大多数主要雀形目谱系中,它们的存在和进化动态在很大程度上仍未被探索,而亚鸣禽则完全未通过细胞遗传学或基因组学方法进行研究。在此,我们展示了迄今为止对GRCs最全面的比较分析,涵盖了4400万年的雀形目进化历程。通过生成一个鸣禽和一个亚鸣禽的首个种系参考基因组、跨越几乎所有主要雀形目谱系的22个新的种系草图基因组以及一个鹦鹉外群的种系草图基因组,我们表明GRCs可能存在于6700种雀形目物种中。我们的研究结果表明,GRCs的进化迅速且与标准A染色体(常染色体和性染色体)明显不同,但保留了功能上重要且经过选择维持的基因。我们观察到基因和重复序列的更替发生速度比A染色体快几个数量级。一些GRC基因,如 和 ,源自古老的基因复制,分布广泛。相比之下,其他GRC基因,如 和 ,已多次独立复制到GRC上,这表明存在适应性限制。在斑胸草雀GRC上发现的 ,最初是从30号染色体复制而来,但随后又从该染色体上丢失,这表明了功能替代,即GRC允许标准基因组中的基因丢失。由于在约4000种雀形目物种中的大多数物种中,GRC是唯一携带 拷贝的地方,GRC的丢失将损害基本的种系功能。我们的研究结果将GRC确立为驱动种系快速进化的基因组创新者。这一事实凸显了其对雀形目多样化的进化意义,并表明程序性DNA消除可能是许多研究不足的动物谱系中一个被忽视但在系统发育上广泛存在的机制。