Suppr超能文献

糖蛋白pherophorin II的时空分布揭示了……生长的细胞外基质的随机几何结构。 (原文结尾不完整,翻译可能会稍有不通顺)

Spatiotemporal distribution of the glycoprotein pherophorin II reveals stochastic geometry of the growing ECM of .

作者信息

von der Heyde Benjamin, Srinivasan Anand, Birwa Sumit Kumar, von der Heyde Eva Laura, Höhn Steph S M H, Goldstein Raymond E, Hallmann Armin

机构信息

Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Bielefeld 33615, Germany.

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2425759122. doi: 10.1073/pnas.2425759122. Epub 2025 Aug 12.

Abstract

The evolution of multicellularity involved the transformation of a simple cell wall of unicellular ancestors into a complex, multifunctional extracellular matrix (ECM). A suitable model organism to study the formation and expansion of an ECM during ontogenesis is the multicellular green alga , which, along with the related volvocine algae, produces a complex, self-organized ECM composed of multiple substructures. These self-assembled structures primarily consist of hydroxyproline-rich glycoproteins, a major component of which is pherophorins. To investigate the geometry of the growing ECM, we fused the gene with the gene for pherophorin II (PhII) in . Confocal microscopy reveals PhII:YFP localization at key ECM structures, including the boundaries of compartments surrounding each somatic cell and the outer surface of the organism. Image analysis during the life cycle allows the stochastic geometry of growing compartments to be quantified; their areas and aspect ratios exhibit robust gamma distributions and exhibit a structural transition from a tight polygonal to a looser acircular packing geometry with stable eccentricity over time, evoking parallels and distinctions with the behavior of hydrated foams. These results provide quantitative insight into a general, open question in biology: how do cells collectively produce a complex structure external to themselves in a robust and accurate manner?

摘要

多细胞性的进化涉及将单细胞祖先的简单细胞壁转变为复杂的、多功能的细胞外基质(ECM)。研究个体发育过程中ECM形成和扩展的合适模式生物是多细胞绿藻,它与相关的团藻目藻类一起,产生由多个子结构组成的复杂的、自组织的ECM。这些自组装结构主要由富含羟脯氨酸的糖蛋白组成,其中主要成分是成膜素。为了研究生长中的ECM的几何形状,我们将基因与中的成膜素II(PhII)基因融合。共聚焦显微镜显示PhII:YFP定位于关键的ECM结构,包括围绕每个体细胞的隔室边界和生物体的外表面。生命周期中的图像分析允许对生长中的隔室的随机几何形状进行量化;它们的面积和纵横比呈现出稳健的伽马分布,并随着时间的推移呈现出从紧密多边形到较松散的非圆形堆积几何形状的结构转变,且偏心率稳定,这与水合泡沫的行为既有相似之处又有区别。这些结果为生物学中一个普遍的开放性问题提供了定量见解:细胞如何集体以稳健和准确的方式产生自身外部的复杂结构?

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383d/12377771/9fc16db2a61e/pnas.2425759122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验