Chen Liangqian, Li Qingsong, Miao Tongqiao, Wang Peng, Zhang Xuhui, Zhang Yang, Wu Xuezhong, Xiao Dingbang
National University of Defense Technology, Changsha, China.
Microsyst Nanoeng. 2025 Aug 12;11(1):152. doi: 10.1038/s41378-025-01011-4.
Microelectromechanical systems (MEMS) gyroscopes with higher precision have always been a focal point of research. Due to limitations in resonant structure, fabrication processes, and measurement and control techniques, MEMS gyroscopes with bias instability better than 0.01°/h are still rare and expensive. This paper incorporates electrode machining error and capacitance detection nonlinear error into the gyroscope model, resulting in a more comprehensive bias output model. Based on this, a mode reversal combined mode deflection control method is proposed to eliminate the thermal drift and decrease the bias instability of the gyroscope. Experimental results demonstrate that compared with the traditional force-to-rebalance mode, the new method achieves a 595 times reduction in bias variation during -40 °C to +60 °C temperature cycles and a 6.3 times reduction in bias instability at room temperature. The average bias instability of honeycomb disk resonator gyroscopes can reach 0.003°/h at integration times of 8500 s after applying the new method across three prototypes, which is the best reported performance of the MEMS gyroscope thus far. This paper provides a new paradigm for achieving higher precision MEMS gyroscopes.
高精度的微机电系统(MEMS)陀螺仪一直是研究的重点。由于谐振结构、制造工艺以及测量与控制技术的限制,零偏不稳定性优于0.01°/h的MEMS陀螺仪仍然稀少且昂贵。本文将电极加工误差和电容检测非线性误差纳入陀螺仪模型,得到了更全面的零偏输出模型。在此基础上,提出了一种模式反转联合模式偏转控制方法,以消除热漂移并降低陀螺仪的零偏不稳定性。实验结果表明,与传统的力反馈再平衡模式相比,新方法在-40°C至+60°C温度循环期间的零偏变化降低了595倍,在室温下的零偏不稳定性降低了6.3倍。在三个原型上应用新方法后,蜂窝盘谐振器陀螺仪在8500 s积分时间下的平均零偏不稳定性可达0.003°/h,这是迄今为止报道的MEMS陀螺仪的最佳性能。本文为实现更高精度的MEMS陀螺仪提供了一种新的范例。