Li Liang, Jin Jiance, Han Kai, Wang Yuzhen, Xia Zhiguo
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, South China University of Technology, Guangzhou, 510641, China.
School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.
Nat Commun. 2025 Aug 12;16(1):7479. doi: 10.1038/s41467-025-62748-0.
Organic-inorganic hybrid metal halides have emerged as pivotal luminescent materials for versatile photonic applications. Nevertheless, prevailing chemical design and synthetic strategies of hybrid luminescent halides are constrained by limited compositional engineering and suboptimal phase crystallization. Herein, we propose a universal alkyl thermal cleavage route to design and grow Eu(II)-based hybrid halide crystals. By modulating the alkyl chain length of 25 organic cations, all the as-synthesized halides achieve narrow-band emission with full-width-at-half-maximum (34-52 nm) and tunable colors in the region of blue-cyan-green owing to the highly efficient 5d-4f transition of Eu(II). We further clarify that the tunable emissions are dependent on the combined effect of configuration, average radius, and distortion index of the Eu-X (X = Cl, Br, I) polyhedra. This work provides fundamental insights into the design principle of narrow-band emitting Eu(II)-based hybrid halides and expands the family of hybrid halides as next-generation luminescence materials for emerging photonic applications.
有机-无机杂化金属卤化物已成为用于多种光子应用的关键发光材料。然而,现有的杂化发光卤化物的化学设计和合成策略受到有限的组成工程和次优相结晶的限制。在此,我们提出了一种通用的烷基热裂解路线来设计和生长基于Eu(II)的杂化卤化物晶体。通过调节25种有机阳离子的烷基链长度,所有合成的卤化物由于Eu(II)的高效5d-4f跃迁,在蓝-青-绿区域实现了半高宽为34-52纳米的窄带发射和可调颜色。我们进一步阐明,可调发射取决于Eu-X(X = Cl、Br、I)多面体的构型、平均半径和畸变指数的综合作用。这项工作为基于Eu(II)的窄带发射杂化卤化物的设计原理提供了基本见解,并扩展了杂化卤化物家族,使其成为用于新兴光子应用的下一代发光材料。