Suppr超能文献

C型利钠肽减轻肺动脉高压患者周细胞中糖酵解增强和从头嘧啶合成。

C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension.

作者信息

Noh Minhee, Mitra Ankita, Krebes Lisa, Schmitz Werner, Dudek Jan, Agarwal Stuti, Maack Christoph, Arias-Loza Paula, Higuchi Takahiro, Aleksic Ivan, de Jesus Perez Vinicio A, Kuhn Michaela, Dabral Swati

机构信息

Institute of Physiology, University of Würzburg, Würzburg, Germany.

Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, CA, USA.

出版信息

Commun Biol. 2025 Aug 12;8(1):1199. doi: 10.1038/s42003-025-08661-0.

Abstract

Metabolic reprogramming of vascular cells plays a crucial role in Pulmonary Arterial Hypertension (PAH), marked by a shift from oxidative phosphorylation to glycolysis (Warburg effect), altered purine biosynthesis, impaired glutaminolysis and fatty acid oxidation, driving endothelial and smooth muscle cell hyperproliferation. The metabolic alterations underlying pericyte dysfunction in PAH remain largely unexplored. Here, we investigated the metabolic alterations in PAH lung pericytes and the impact of C-type natriuretic peptide (CNP) and Guanylyl Cyclase-B/cyclic GMP signaling on these changes. Our results demonstrate that PAH pericytes exhibit increased glucose uptake, glycolysis, and de novo pyrimidine synthesis, promoting their hyperproliferation. These changes are driven by the upregulated glucose transporter, GLUT-1 and Pyruvate dehydrogenase kinase 1, along with enhanced CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) activity, both in vitro and in situ. CNP counteracts these alterations through activation of cGMP-dependent kinase I, reducing HIF-1α and GLUT-1 expression and thereby glucose uptake. Additionally, CNP activates Phosphodiesterase 2 A and thereby inhibits CAD activation and de novo pyrimidine synthesis. Accordingly, CNP prevented growth factor-induced proliferation and metabolic changes in murine pericytes within precision-cut lung slices. This study highlights dysregulated metabolic pathways in PAH pericytes and the therapeutic potential of CNP.

摘要

血管细胞的代谢重编程在肺动脉高压(PAH)中起着关键作用,其特征是从氧化磷酸化向糖酵解转变(瓦伯格效应)、嘌呤生物合成改变、谷氨酰胺分解受损以及脂肪酸氧化受损,从而驱动内皮细胞和平滑肌细胞过度增殖。PAH中周细胞功能障碍的潜在代谢改变在很大程度上仍未得到探索。在此,我们研究了PAH肺周细胞的代谢改变以及C型利钠肽(CNP)和鸟苷酸环化酶-B/环磷酸鸟苷信号对这些变化的影响。我们的结果表明,PAH周细胞表现出葡萄糖摄取增加、糖酵解增加和从头嘧啶合成增加,促进了它们的过度增殖。这些变化是由上调的葡萄糖转运蛋白GLUT-1和丙酮酸脱氢酶激酶1以及增强的CAD(氨甲酰磷酸合成酶2、天冬氨酸转氨甲酰酶和二氢乳清酸酶)活性驱动的,无论是在体外还是在原位。CNP通过激活环磷酸鸟苷依赖性激酶I来抵消这些改变,降低缺氧诱导因子-1α和GLUT-1的表达,从而减少葡萄糖摄取。此外,CNP激活磷酸二酯酶2A,从而抑制CAD的激活和从头嘧啶合成。因此,CNP可防止生长因子诱导的小鼠周细胞在精密切割肺切片中的增殖和代谢变化。这项研究突出了PAH周细胞中失调的代谢途径以及CNP的治疗潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验