Monir Safa H, Abuzalat Osama, El-Sayed Ibrahim E T, Abdel-Bary Hamed M, Tony Maha A
Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt.
Chemistry department, Faculty of Science, Menoufia University, Shebin El- Kom, Egypt.
Sci Rep. 2025 Aug 12;15(1):29476. doi: 10.1038/s41598-025-13124-x.
This study offers a bimetallic MIL-88 B Metal-Organic Frameworks (MOF) derived carbon composite Co/Ferrite MOF namely Co/Fe@C that is synthesized through a solvothermal route followed by a simple thermal shock treatment and used as a Fenton-like source. The synthesized Co/Fe@C morphology and elemental analysis are characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and vibrating sample magnetometer (VSM). Carbon based MOF demonstrated fascinating features as a Fenton source conducted in dark oxidation route. The material exposed a superior efficiency in treating various organic pollutants including basic (Malachite Green, MG) and acidic (Oil Orange SS, OOSS) dyes as a textile simulated effluent and tetracycline (TC) as a model pharmaceutical wastewater. The experimental results exhibited the optimum reaction conditions of 400 mg/L for HO for all contaminants oxidation and ranged from 10 to 40 mg/L for Co/Fe@C catalyst at varied optimal pH values. Under optimal conditions, the Co/Fe@C catalyst achieved removal efficiencies reached to 100% for MG, 83% for OOSS, and 72% for TC within 30 min. Furthermore, for potential full-scale application, the kinetic investigation is highlighted and the reaction is following the second kinetic order. Also, to assure catalyst sustainability, the Co/Fe@C substance is reused after recovery for seven oxidation cycles with a reasonable decline in its activity that reached to 57, 45 and 42% removals for MG, OOSS and TC, respectively. Furthermore, the mechanism exploration indicated the active species involved oxidation process primarily affecting TC and OOSS oxidation is holes (h) and MG is OH radicals.
本研究提供了一种双金属MIL-88 B金属有机框架(MOF)衍生的碳复合材料Co/铁氧体MOF,即Co/Fe@C,它是通过溶剂热法合成,随后进行简单的热冲击处理,并用作类芬顿源。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、X射线光电子能谱(XPS)、布鲁诺尔-埃米特-特勒(BET)和振动样品磁强计(VSM)对合成的Co/Fe@C的形态和元素分析进行了表征。碳基MOF作为在暗氧化途径中进行的芬顿源表现出迷人的特性。该材料在处理各种有机污染物方面表现出卓越的效率,包括作为纺织模拟废水的碱性(孔雀石绿,MG)和酸性(油橙SS,OOSS)染料以及作为模型制药废水的四环素(TC)。实验结果表明,对于所有污染物的氧化,HO的最佳反应条件为400 mg/L,在不同的最佳pH值下,Co/Fe@C催化剂的用量范围为10至40 mg/L。在最佳条件下,Co/Fe@C催化剂在30分钟内对MG的去除效率达到100%,对OOSS的去除效率达到83%,对TC的去除效率达到72%。此外,为了潜在的大规模应用,突出了动力学研究,反应遵循二级动力学。此外,为了确保催化剂的可持续性,Co/Fe@C物质在回收后重复使用七个氧化循环,其活性有合理下降,对MG、OOSS和TC的去除率分别达到57%、45%和42%。此外,机理探索表明,参与氧化过程的活性物种主要影响TC和OOSS氧化的是空穴(h),影响MG氧化的是羟基自由基(OH)。