Del Río De Vicente José Ignacio, Marchetti Valeria, Lucarini Ivano, Palmieri Elena, Polese Davide, Montaina Luca, Maita Francesco, Kriska Jan, Tureckova Jana, Anderova Miroslava, Maiolo Luca
Consiglio Nazionale Delle Ricerche, Istituto per la Microelettronica e Microsistemi, 00133 Rome, Italy.
Alma Mater Studiorum-Department of Engineering, Università di Bologna, 40126 Bologna, Italy.
Nanomaterials (Basel). 2025 Jul 30;15(15):1173. doi: 10.3390/nano15151173.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen-glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode-tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research.
脑缺血是一种由脑血流量减少引起的严重病症,会导致脑组织中离子梯度的破坏。这种失衡引发扩散性去极化,即通过灰质传播的神经元和胶质细胞去极化波。微电极阵列(MEA)对于实时监测体内和体外的这些电生理过程至关重要,但其灵敏度和信号质量对于准确检测细胞外脑活动至关重要。在本研究中,我们评估了一种基于金涂覆氧化锌纳米棒(ZnO NRs)的柔性微电极阵列(称为纳米fMEA)的性能,特别是用于在病理条件下进行高保真电生理记录。在两种缺血模型下对急性小鼠脑切片进行了测试:氧葡萄糖剥夺(OGD)和高钾血症。与平面fMEA相比,纳米fMEA在事件检测率和捕捉神经信号的细微波动方面有显著改善。这种性能的提高主要归因于优化的电极-组织界面,该界面降低了阻抗并改善了电荷转移。这些特性使纳米fMEA能够更有效地检测微弱或短暂的电生理事件,使其成为研究代谢应激期间神经动力学的有价值平台。总体而言,结果强调了ZnO NRs在推进神经科学研究电生理工具方面的前景。