文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FedECA:用于在分布式环境中对具有事件发生时间数据进行因果推断的联邦外部对照臂。

FedECA: federated external control arms for causal inference with time-to-event data in distributed settings.

作者信息

Ogier du Terrail Jean, Klopfenstein Quentin, Li Honghao, Mayer Imke, Loiseau Nicolas, Hallal Mohammad, Debouver Michael, Camalon Thibault, Fouqueray Thibault, Arellano Castro Jorge, Yanes Zahia, Dahan Laëtitia, Taïeb Julien, Laurent-Puig Pierre, Bachet Jean-Baptiste, Zhao Shulin, Nicolle Remy, Cros Jérôme, Gonzalez Daniel, Carreras-Torres Robert, Garcia Velasco Adelaida, Abdilleh Kawther, Doss Sudheer, Balazard Félix, Andreux Mathieu

机构信息

Owkin, Inc., New York, NY, USA.

Department of Digestive Oncology, Hôpital la Timone, Marseille, France.

出版信息

Nat Commun. 2025 Aug 13;16(1):7496. doi: 10.1038/s41467-025-62525-z.


DOI:10.1038/s41467-025-62525-z
PMID:40804048
Abstract

External control arms can inform early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, accessing sufficient real-world or historical clinical trials data is challenging. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a method that leverages federated learning to enable inverse probability of treatment weighting for time-to-event outcomes on separate cohorts without needing to pool data. To showcase its potential, we apply it in different settings of increasing complexity, culminating with a real-world use-case in which our method is used to compare the treatment effect of two approved chemotherapy regimens using data from three separate cohorts of patients with metastatic pancreatic cancer. By sharing our code, we hope it will foster the creation of federated research networks and thus accelerate drug development.

摘要

外部对照臂可为实验药物的早期临床开发提供信息,并为监管批准提供疗效证据。然而,获取足够的真实世界或历史临床试验数据具有挑战性。事实上,通过严格控制数据处理来保护患者权利的法规使得在中央服务器中汇集来自多个来源的数据往往很困难。为了解决这些限制,我们开发了一种方法,该方法利用联邦学习,在无需汇集数据的情况下,对不同队列的事件发生时间结局进行治疗权重的逆概率计算。为了展示其潜力,我们将其应用于不同复杂度不断增加的场景中,最终以一个真实世界用例告终,在该用例中,我们的方法被用于使用来自三个不同队列的转移性胰腺癌患者的数据比较两种已批准化疗方案的治疗效果。通过分享我们的代码,我们希望它将促进联邦研究网络的创建,从而加速药物开发。

相似文献

[1]
FedECA: federated external control arms for causal inference with time-to-event data in distributed settings.

Nat Commun. 2025-8-13

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Taxane monotherapy regimens for the treatment of recurrent epithelial ovarian cancer.

Cochrane Database Syst Rev. 2022-7-12

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Edge computing with federated learning for early detection of citric acid overdose and adjustment of regional citrate anticoagulation.

BMC Med Inform Decis Mak. 2025-8-30

[8]
A novel federated learning framework for medical imaging: Resource-efficient approach combining PCA with early stopping.

Med Phys. 2025-8

[9]
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).

Cochrane Database Syst Rev. 2018-7-12

[10]
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.

Cochrane Database Syst Rev. 2018-6-25

本文引用的文献

[1]
Real-world federated learning in radiology: hurdles to overcome and benefits to gain.

J Am Med Inform Assoc. 2025-1-1

[2]
Large language models could make natural language again the universal interface of healthcare.

Nat Med. 2024-10

[3]
Propensity Weighted federated learning for treatment effect estimation in distributed imbalanced environments.

Comput Biol Med. 2024-8

[4]
Personalized Federated Learning for Institutional Prediction Model using Electronic Health Records: A Covariate Adjustment Approach.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[5]
Covariate balance-related propensity score weighting in estimating overall hazard ratio with distributed survival data.

BMC Med Res Methodol. 2023-10-13

[6]
PyDESeq2: a python package for bulk RNA-seq differential expression analysis.

Bioinformatics. 2023-9-2

[7]
Federated causal inference in heterogeneous observational data.

Stat Med. 2023-10-30

[8]
Large language models encode clinical knowledge.

Nature. 2023-8

[9]
External control arms for rare diseases: building a body of supporting evidence.

J Pharmacokinet Pharmacodyn. 2023-12

[10]
Cause for concern: the rising incidence of early-onset pancreatic cancer.

Lancet Gastroenterol Hepatol. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索