Ogier du Terrail Jean, Klopfenstein Quentin, Li Honghao, Mayer Imke, Loiseau Nicolas, Hallal Mohammad, Debouver Michael, Camalon Thibault, Fouqueray Thibault, Arellano Castro Jorge, Yanes Zahia, Dahan Laëtitia, Taïeb Julien, Laurent-Puig Pierre, Bachet Jean-Baptiste, Zhao Shulin, Nicolle Remy, Cros Jérôme, Gonzalez Daniel, Carreras-Torres Robert, Garcia Velasco Adelaida, Abdilleh Kawther, Doss Sudheer, Balazard Félix, Andreux Mathieu
Owkin, Inc., New York, NY, USA.
Department of Digestive Oncology, Hôpital la Timone, Marseille, France.
Nat Commun. 2025 Aug 13;16(1):7496. doi: 10.1038/s41467-025-62525-z.
External control arms can inform early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, accessing sufficient real-world or historical clinical trials data is challenging. Indeed, regulations protecting patients' rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a method that leverages federated learning to enable inverse probability of treatment weighting for time-to-event outcomes on separate cohorts without needing to pool data. To showcase its potential, we apply it in different settings of increasing complexity, culminating with a real-world use-case in which our method is used to compare the treatment effect of two approved chemotherapy regimens using data from three separate cohorts of patients with metastatic pancreatic cancer. By sharing our code, we hope it will foster the creation of federated research networks and thus accelerate drug development.
外部对照臂可为实验药物的早期临床开发提供信息,并为监管批准提供疗效证据。然而,获取足够的真实世界或历史临床试验数据具有挑战性。事实上,通过严格控制数据处理来保护患者权利的法规使得在中央服务器中汇集来自多个来源的数据往往很困难。为了解决这些限制,我们开发了一种方法,该方法利用联邦学习,在无需汇集数据的情况下,对不同队列的事件发生时间结局进行治疗权重的逆概率计算。为了展示其潜力,我们将其应用于不同复杂度不断增加的场景中,最终以一个真实世界用例告终,在该用例中,我们的方法被用于使用来自三个不同队列的转移性胰腺癌患者的数据比较两种已批准化疗方案的治疗效果。通过分享我们的代码,我们希望它将促进联邦研究网络的创建,从而加速药物开发。
Cochrane Database Syst Rev. 2022-7-12
Cochrane Database Syst Rev. 2021-4-19
BMC Med Inform Decis Mak. 2025-8-30
Cochrane Database Syst Rev. 2018-7-12
Cochrane Database Syst Rev. 2018-6-25
J Am Med Inform Assoc. 2025-1-1
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
BMC Med Res Methodol. 2023-10-13
Bioinformatics. 2023-9-2
Stat Med. 2023-10-30
Nature. 2023-8
J Pharmacokinet Pharmacodyn. 2023-12
Lancet Gastroenterol Hepatol. 2023-4