Suppr超能文献

根系分解中与方法学相关的逆转:森林林窗和根序的不同调节作用

Methodology-Dependent Reversals in Root Decomposition: Divergent Regulation by Forest Gap and Root Order in .

作者信息

Yin Haifeng, Zeng Jie, Liu Size, Su Yu, Yu Anwei, Li Xianwei

机构信息

Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.

College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.

出版信息

Plants (Basel). 2025 Aug 1;14(15):2365. doi: 10.3390/plants14152365.

Abstract

Understanding root decomposition dynamics is essential to address declining carbon sequestration and nutrient imbalances in monoculture plantations. This study elucidates how forest gaps regulate root decomposition through comparative methodological analysis, providing theoretical foundations for near-natural forest management and carbon-nitrogen cycle optimization in plantations. The results showed the following: (1) Root decomposition was significantly accelerated by the in situ soil litterbag method (ISLM) versus the traditional litterbag method (LM) (decomposition rate () = 0.459 vs. 0.188), reducing the 95% decomposition time () by nearly nine years (6.53 years vs. 15.95 years). ISLM concurrently elevated the root potassium concentration and reconfigured the relationships between root decomposition and soil nutrients. (2) Lower-order roots (orders 1-3) decomposed significantly faster than higher-order roots (orders 4-5) ( = 0.455 vs. 0.193). This disparity was amplified under ISLM (lower-/higher-order root ratio = 4.1) but diminished or reversed under LM (lower-/higher-order root ratio = 0.8). (3) Forest gaps regulated decomposition through temporal phase interactions, accelerating decomposition initially (0-360 days) while inhibiting it later (360-720 days), particularly for higher-order roots. Notably, forest gap effects fundamentally reversed between methodologies (slight promotion under LM vs. significant inhibition under ISLM). Our study reveals that conventional LM may obscure genuine ecological interactions during root decomposition, confirms lower-order roots as rapid nutrient-cycling pathways, provides crucial methodological corrections for plantation nutrient models, and advances theoretical foundations for precision management of plantations.

摘要

了解根系分解动态对于解决单一栽培人工林中碳固存下降和养分失衡问题至关重要。本研究通过比较方法分析阐明了森林林隙如何调节根系分解,为人工林近自然森林管理和碳氮循环优化提供了理论基础。结果如下:(1) 与传统的凋落物袋法 (LM) 相比,原位土壤凋落物袋法 (ISLM) 显著加速了根系分解(分解速率 () = 0.459 对 0.188),将 95% 的分解时间 () 缩短了近九年(6.53 年对 15.95 年)。ISLM 同时提高了根系钾浓度,并重新配置了根系分解与土壤养分之间的关系。(2) 低阶根(1 - 3 级)的分解速度明显快于高阶根(4 - 5 级)( = 0.455 对 0.193)。这种差异在 ISLM 下放大(低阶/高阶根 比率 = 4.1),但在 LM 下减小或逆转(低阶/高阶根 比率 = 0.8)。(3) 森林林隙通过时间阶段相互作用调节分解,最初(0 - 360 天)加速分解,随后(360 - 720 天)抑制分解,特别是对于高阶根。值得注意的是,森林林隙效应在不同方法之间基本相反(LM 下略有促进,ISLM 下显著抑制)。我们的研究表明,传统的 LM 在根系分解过程中可能掩盖真正的生态相互作用,确认低阶根是快速养分循环途径,为人工林养分模型提供关键的方法校正,并推进人工林精准管理的理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb56/12348892/10ada21021f8/plants-14-02365-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验